# Wild Juvenile Salmonid Monitoring Program Clayoquot Sound, BC 2017

# Prepared for

# **Cermaq Canada**

203-919 Island Highway Campbell River, BC V9W 2C2





1310 Marwalk Crescent, Campbell River, BC. V9W 5X1 Phone: (250) 287-2462 Fax: (250) 287-2452 Email: info@mainstreambio.ca www.mainstreambio.ca

**June 2017** 

# Summary

Beach seine sampling was conducted on behalf of Cermaq Canada in Clayoquot Sound, BC in 2017. Sampling was completed to monitor sea lice abundance, prevalence and intensity on juvenile wild salmon within Clayoquot Sound in support of the Aquaculture Stewardship Certification process for Cermaq Canada finfish aquaculture sites in the area. This data report represents the third year of wild juvenile salmonid monitoring within Clayoquot Sound conducted solely by Cermaq Canada.

Sampling was conducted during three separate sampling events in April and May 2017, selected to coincide with the peak outmigration period of juvenile salmonids. Sampling was completed at 17 sites within Clayoquot Sound, BC. The sites were selected based on their locations relative to existing aquaculture sites located in the area. Sampling was completed with the support of the Ahousaht First Nation and the Nuu-chah-nulth Tribal Council.

Total catch numbers of each salmonid species were recorded. Thirty individuals or the total number of captured samples (if less than 30 were captured) were collected at each of the 17 sites during the sampling events. Water quality measurements including temperature and salinity were recorded at each site during each sampling event.

Collected sample fish were frozen and analyzed in the lab for the presence of sea lice by Mainstream Biological Consulting. Sea lice observed on the individual fish specimens during laboratory analysis were initially identified as either non-motile chalimus, or motile pre-adults and adults. Lice identified as being in any of the four chalimus stages were identified as *Lepeophtheirus spp.* or *Caligus clemensi*. Motile lice, either pre-adults or adults, were identified as either *Lepeophtheirus spp.* or *Caligus clemensi* and the sex of the louse was determined. Motile *Lepeophtheirus spp.* sea lice found on salmonid specimens were not identified to species, but have been assumed to be *L. salmonis* due to the lack of documented infestation of Pacific salmon by other *Lepeophtheirus* lice species (Jones and Nemec, 2004).

This data summary report documents the observed sea lice infestation rate on retained wild juvenile salmon collected in Clayoquot Sound in 2017. A total of 1,244 juvenile salmonids and one threespine stickleback (*Gasterosteus aculeatus*) underwent

analysis for sea lice infestation including 1,122 chum salmon (*Oncorhynchus keta*), 84 coho salmon (*Oncorhynchus kisutch*) and 38 sockeye salmon (*Oncorhynchus nerka*). No Atlantic salmon (*Salmo salar*) were captured during sampling completed in Clayoquot Sound in 2017.

From the total sample population 234 fish were infested with 381 sea lice. The calculated prevalence for the total sample population was 18.8 % and the sea lice abundance was 0.31 for the sample population collected in Clayoquot Sound in 2017.

Chum salmon smolts were captured in significantly greater numbers than any other species. A total of 23,608 chum salmon were captured, representing 93.7 % of all captured samples. Of the 23,608 chum captured, 1,122 were kept for lab analysis for sea lice infestation. A total of 222 chum smolts were found to be infested with a total of 354 lice resulting in a calculated prevalence of 19.8 %, abundance of 0.32 and an average intensity of 1.6 for the chum salmon sample population.

A total of 90 coho salmon were captured, representing 0.04% of all captured salmonids. Of the 90 coho captured, 84 were kept for lab analysis for sea lice infestation. A total of eight coho smolts were found to be infested with a total of 21 lice resulting in a calculated prevalence of 9.5 %, abundance of 0.25 and an average intensity of 2.6 for the coho salmon sample population.

A total of 1238 sockeye salmon were captured, representing 4.9% of all captured salmonids. Of the 1238 sockeye captured, 38 were kept for lab analysis for sea lice infestation. A total of four sockeye smolts were found to be infested with a total of six lice resulting in a calculated prevalence of 10.5 %, abundance of 0.16 and an average intensity of 1.5 for the sockeye salmon sample population.

The single threespine stickleback was found to not be infested with sea lice.

A total of 360 *Lepeophtheirus salmonis* lice of various life stages were identified on 228 individual samples and 21 *Caligus clemensi* lice were identified on 18 fish. There were 12 salmonids infested with both sea lice species.

For the chum salmon sample population, a total of 340 *Lepeophtheirus salmonis* sea lice of various life stages were identified on 216 juvenile chum salmon and 14 *Caligus clemensi* sea lice were found on 14 of the juvenile chum salmon analyzed in the lab.

There were eight juvenile chum salmon that were infested with both *L. salmonis* and *C. clemensi*.

For the coho salmon sample population, a totainfestedl of 14 *Lepeophtheirus salmonis* sea lice of various life stages were identified on eight juvenile coho salmon and seven *Caligus clemensi* sea lice were found on four of the juvenile coho salmon analyzed in the lab. Four juvenile coho salmon were infested with both *L. salmonis* and *C. clemensi*.

For the sockeye salmon sample population, a total of six *Lepeophtheirus salmonis* sea lice of various life stages were identified on four juvenile sockeye salmon. There were no *Caligus clemensi* sea lice observed on the sockeye sample population.

# **Table of Contents**

| Summary                                                       | II  |
|---------------------------------------------------------------|-----|
| Table of Contents                                             | v   |
| List of Figures                                               | vi  |
| List of Tables                                                | vii |
| 1.0 Introduction                                              | 1   |
| 2.0 Methods                                                   | 4   |
| 2.1 Site Locations                                            |     |
| 2.2 Field Procedures                                          |     |
| 2.3 Laboratory Procedures                                     |     |
| 2.4 Data Analysis                                             |     |
| ,                                                             |     |
| 3.0 Results                                                   |     |
| 3.1 Water Quality Parameters                                  |     |
| 3.2 Fish Sample Composition                                   |     |
| 3.3 Fish Sample Size Statistics                               |     |
| 3.3.1 Chum salmon                                             |     |
| 3.3.2 Coho salmon                                             |     |
|                                                               |     |
| 3.4 Sea Lice Infestation                                      |     |
| 3.4.2 Infestation Rates of Coho Salmon                        |     |
| 3.4.4 Infestation Rates of Sockeye Salmon                     |     |
| 3.5 Infestation Rates by Sea Lice Species                     |     |
| 3.5.1 Infestation Rates by Sea Lice Species on Chum Salmon    |     |
| 3.5.2 Infestation Rates by Sea Lice Species on Coho Salmon    |     |
| 3.5.3 Infestation Rates by Sea Lice Species on Sockeye Salmon |     |
| 4.0 Conclusions                                               |     |
| 5.0 References                                                |     |
|                                                               |     |
| Appendix I – Field Data                                       | I   |
| Appendix II - Capture and Collection Sample Totals            | III |
| Appendix III – Sea Lice Analysis Data                         | VI  |

# **List of Figures**

| Figure 1: | An overview map showing the location of Clayoquot Sound on the west coast of Vancouver Island, BC                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------|
| Figure 2: | The locations of the 17 beach seine sites in Clayoquot Sound sampled in 2017.                                            |
| Figure 3: | Surface water temperature recorded at 17 beach seine sites in Clayoquot Sound, BC between April 10, 2017 and May 5, 2017 |
| Figure 4: | Salinity measurements recorded at 17 beach seine sites in Clayoquot Sound BC between April 10, 2017 and May 5, 201712    |

# **List of Tables**

| Table 1:  | The site number and location of the 17 beach seine sites where fish were collected for sea lice analysis in Clayoquot Sound in 20174                                                             |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2:  | The total of collected individuals of each fish species captured in Clayoquot Sound, BC in April and May 2017, and the percentage of the total capture population that they represent            |
| Table 3:  | The number of captured fish (Capture Total) and the corrected number of individual fish collected (Sample Total) from each of the 17 sample sites in Clayoquot Sound, BC in April and May 201714 |
| Table 4:  | Results of analysis for sea lice infestation on the sample population collected by beach seine in Clayoquot Sound, BC in 201716                                                                  |
| Table 5:  | The number of sea lice found on chum salmon collected in Clayoquot Sound in 2017 summarized by the 17 sites where beach seining was conducted19                                                  |
| Table 6:  | Calculated sea lice prevalence, abundance and intensity by site as determined for chum salmon collected in Clayoquot Sound, BC in 201720                                                         |
| Table 7:  | The number of sea lice found on coho salmon collected in Clayoquot Sound in 2017 summarized by the 17 sites where beach seining was conducted22                                                  |
| Table 8:  | Calculated sea lice prevalence, abundance and intensity by site as determined for coho salmon collected in Clayoquot Sound, BC in 201723                                                         |
| Table 9:  | The number of sea lice found on sockeye salmon collected in Clayoquot Sound in 2017 summarized by the 17 sites where beach seining was conducted                                                 |
| Table 10: | Calculated sea lice prevalence, abundance and intensity by site as determined for sockeye salmon collected in Clayoquot Sound, BC in 2017. 26                                                    |
| Table 11: | The number of sea lice in each life stage by species identified on chum salmon from Clayoquot Sound 2017. LEP = Lepeophtheirus salmonis CAL = Caligus clemensi                                   |
| Table 12: | The number of sea lice in each life stage by species identified on coho salmon from Clayoquot Sound 2017. LEP = Lepeophtheirus salmonis CAL = Caligus clemensi                                   |
| Table 13: | The number of sea lice in each life stage by species identified on sockeye salmon from Clayoquot Sound 2017. LEP = Lepeophtheirus salmonis CAL = Caligus clemensi                                |

### 1.0 Introduction

At the request of Cermaq Canada, beach seine sampling to capture wild juvenile salmon and threespine stickleback to be analyzed for sea lice infestation took place at 17 sites located in Clayoquot Sound, BC (Figure 1). The sample collection occurred during three sample events in 2017 on April 10/11, April 20/21 and May 4/5. These weeks were selected to coincide with the estimated peak outmigration dates of juvenile salmonids. Sampling was completed with the support of the Ahousaht First Nation and the Nuu-chah-nulth Tribal Council.

Parasitic copepods from the family Caligidae (sea lice) found in the coastal waters of British Columbia are divided into two genera: Lepeophtheirus and Caligus. Eleven species of Lepeophtheirus have been identified infesting fish in the Pacific Ocean, while only one species of Caligus (Caligus clemensi) have been identified (Margolis and Arthur 1979; McDonald and Margolis, 1995). Motile Lepeophtheirus spp. sea lice found on salmonid specimens were assumed to be L. salmonis due to the lack of documented infestation of Pacific salmon by other Lepeophtheirus lice species (Jones and Nemec, 2004). Both of these genera have similar life histories and developmental stages (Kabata, 1972; Johnson and Albright, 1991a). The sea lice hatch from eggs and develop through two free-swimming naupilii stages before developing into an infectious freeswimming copepodid. At this point, the sea lice attach to their host and develop through four chalimus stages. The chalimus are "non-motile" and are attached to their host by a frontal filament. The final chalimus stage terminates as the sea lice become "motile" and are no longer attached to their hosts by the frontal filament. The sea lice can now move freely on the fish as they develop through a pre-adult stage before becoming reproductively viable adults.

Interest in sea lice and their interaction with juvenile salmonids in near shore environments has been the ongoing focus of both media reports and scientific study in coastal British Columbia. This interest followed claims, made in 2001 and 2002, of high levels of sea lice infestation on salmonids in the Broughton Archipelago (Morton *et al.*, 2004). Morton *et al.* (2004) concluded that sea lice abundance on juvenile pink (*Oncorhynchus gorbuscha*) and chum (*O. keta*) salmon were higher at sample sites located near salmon farms. These results led to the speculation by Morton *et al.* (2004)

and others that sea lice infestation may be negatively contributing to the survival of juvenile salmonids in the Broughton Archipelago.

Cermaq Canada requested monitoring of sea lice abundance, prevalence and intensity on wild juvenile salmon within Clayoquot Sound in support of Aquaculture Stewardship Certification for their aquaculture sites within the area. This data summary report documents the observed sea lice infestation rates on retained samples collected in Clayoquot Sound in 2017. This represents the third year of wild juvenile salmonid monitoring in Clayoquot Sound conducted solely by Cermaq Canada. This monitoring program has been adapted from previous sea lice monitoring completed by the Clayoquot Sound Sea Lice Working Group and represents a continuation of the sampling they conducted between 2003 and 2011.




Figure 1: An overview map showing the location of Clayoquot Sound on the west coast of Vancouver Island, BC.

## 2.0 Methods

The fish inspected for sea lice infestation were collected from 17 sites in Clayoquot Sound, BC. These sites were chosen based on their locations relative to existing Cermaq Canada aquaculture sites in the area (Figure 2). The sites were sampled three times in 2017 on April 10/11, April 20/21 and May 4/5.

### 2.1 Site Locations

The 17 sites at which beach seining was conducted to collect specimens for sea lice analysis consisted of three sites in Shelter Inlet, two sites in Millar Channel, two sites in Herbert Inlet, six sites in Bedwell Sound and four sites in Fortune Channel. The approximate locations of the 17 beach seine sites are shown in Figure 2. GPS coordinates collected in the field for the sites are presented in Table 1.

Table 1: The site number and location of the 17 beach seine sites where fish were collected for sea lice analysis in Clayoquot Sound in 2017.

| Site # |          | JTM Coordinates (I | NAD 83)  |
|--------|----------|--------------------|----------|
| Site # | UTM Zone | Easting            | Northing |
| SI1    | 9        | 705006             | 5475521  |
| SI2    | 9        | 705188             | 5476034  |
| SI3    | 9        | 711762             | 5480267  |
| MC1    | 9        | 713430             | 5472219  |
| MC3    | 9        | 712344             | 5468390  |
| HI1    | 9        | 2885820            | 5474681  |
| HI2    | 10       | 285829             | 5468979  |
| BS1    | 10       | 285272             | 5458561  |
| BS2    | 10       | 287224             | 5456470  |
| BS3    | 10       | 288916             | 5462484  |
| BS4    | 9        | 657346             | 5459486  |
| BS5    | 10       | 295628             | 5467503  |
| BS6    | 10       | 294024             | 5457784  |
| FC2    | 10       | 299449             | 5454460  |
| FC3    | 10       | 300347             | 5457616  |
| FC4    | 10       | 298327             | 5454544  |
| FC5    | 10       | 297106             | 5457859  |
|        |          |                    |          |

# Clayoquot Sound Wild Smolt Monitoring Program

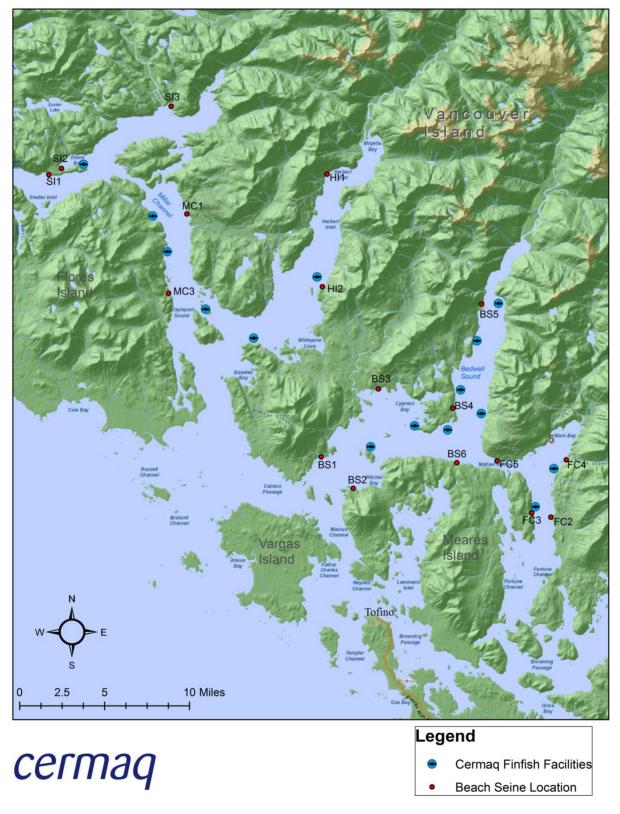



Figure 2: The locations of the 17 beach seine sites in Clayoquot Sound sampled in 2017.

#### 2.2 Field Procedures

In house procedures, adapted from procedures utilized by the Department of Fisheries and Oceans (DFO) for beach seining, fish collection and field data recording in place since 2004 for juvenile salmon sampling were used by Mainstream Biological Consulting staff during sampling in Clayoguot Sound in 2017.

Boats and drivers were supplied by Ahousaht First Nations for beach sampling in Clayoquot Sound in 2017. A 150 ft (45.7 m) long by 12 ft (3.7 m) deep beach seine net was used to capture specimens. The net was constructed in three 50 ft (15.2 m) sections. The centre bunt section consisted of one-quarter inch diameter diamond mesh, while the two side panels (wings) were half-inch diameter diamond mesh. Floats were located every 30 cm along the top-line and a lead line weighted the bottom of the net.

A four-person crew was utilized to conduct the beach seine sets and retrieve samples in a consistent manner at each of the 17 selected sites. All beaches were approached slowly by boat and one crewmember was put ashore with the towline from one end of the beach seine net. The onshore crewmember held the towline at one side of the sample site, while the second and third crewmembers ensured the net deployed smoothly off the bow or side of the boat. The fourth crewmember, the boat operator, backed the boat in a wide semicircle towards the opposite side of the sample site and remained on the boat. When the net was fully deployed, the second and third crewmembers stepped into the shallow water with the towline or tossed it to the awaiting crewmember on shore. A slow retrieval of the net began immediately.

As the net was slowly retrieved, the probe of a YSI85 water meter was placed just below the water surface at the stern end of the boat, to collect salinity and water temperature data. The YSI85 meter was calibrated weekly with de-ionized water while traveling to the sample sites.

The crewmembers retrieved the net evenly from opposite ends ensuring that the lead line remained as close to the bottom as possible. All retrieved netting was piled on the beach above the water level. As the retrieval reached the net bunt, the lead line was retrieved at a faster rate than the floats to allow the netting of the bunt to form a bag under the captured fish. The lead line was then pulled up onto the beach above the

water level. One crewmember worked their way around the outside of the net in the shallow water to ensure the floats stayed above the surface of the water. In this manner a small, shallow bag formed from the bunt of the net held the captured fish in the water.

The three shore crewmembers participated in the collection of individual fish to ensure that captured fish remained in the net for as short a period of time as possible. The net was manipulated, if necessary, in response to rising or falling tides in order to ensure the captured fish remained in the net and were held in sufficient water to minimize stress. The level of sufficient water was dependant on the size and numbers of captured fish, but was generally thought of as enough water to minimize fish contact with the net or with other fish.

A total of 30 individuals or all of the individuals present (if less than 30) were collected as samples for sea lice infestation analysis. Individual fish were "swam" into an appropriately sized whirlpac bag. All handling of fish was kept to a minimum.

When all the fish for retention were collected, a total catch number for each species was recorded. The fish remaining in the net were counted out of the seine net, or an estimate of the remaining fish was made (estimates were used when it appeared that more than 500 individuals from any given species remained in the net). The total of fish remaining in the net was added to the number of retained individuals to calculate a total capture number for a given species.

A crewmember recorded all the information from each beach seine set in a standardized field form. The information recorded included the following:

- The site number (Site 1-17);
- The date:
- The time at the end of the individual fish collection;
- Comments on weather and oceanic conditions:
- Comments regarding wildlife present near the sample site;
- Total capture and retained fish numbers for each specimen group; and
- Water temperature (°C) and salinity (ppt) to one decimal place.

The retained fish from each site were packaged separately in re-sealable bags and labelled with the site number (Site 1-17) and the week number (Week 1, 2 or 3). Site

sample bags were placed in a portable freezer, which was plugged into the boat's battery. The specimens were transferred to a freezer immediately upon return from the field.

The beach seine net was reloaded onto the bow of the boat. Crewmembers scanned the net for obvious holes, which were repaired immediately if found. The YSI85 meter was shut off and stored, and all gear and coolers were reloaded into the boat.

The above procedures for beach seine net deployment and retrieval, as well as those described for fish collection, were repeated at all 17 sample sites.

## 2.3 Laboratory Procedures

The laboratory procedures for sea lice analysis have been adapted from the procedures demonstrated by Sheila Dawe and Eliah Kim at the Pacific Biological Station in Nanaimo, BC, during sea lice identification training that was conducted on April 1, 2004. Additional sea lice identification training by Paul Callow was conducted at the Pacific Biological Station in September 2007.

Fish samples were thawed immediately prior to lab analysis. Individual fish were identified to species and counted. The results of this identification and count were compared to the reported data found on the field data sheets.

A standardized data sheet was used to record sea lice analysis results from each site. The site and week number, sample date and number of fish were recorded. The date and time of the start of the analysis was also noted on the data sheet. Data from individual fish was recorded as the analysis proceeded.

Individual fish, when thawed, were removed from their bag, using a pair of forceps at the caudal peduncle, and placed in a petri dish. Each bag was labelled chronologically with an individual identification number (1 –1245). Each fish was then scanned for the presence of sea lice under a stereoscopic dissection microscope. The microscope was set at a magnification of 20X for the preliminary survey of each fish sample, but magnification was occasionally increased to 40X during individual sea lice identification.

Microscopic analysis of each individual fish began at the anterior end of the left side of the specimen. The head was examined first, after which a scan was made along the dorsal half of the specimen working towards the posterior end and the tail. The dorsal fin was lifted and expanded, as was the caudal fin, with a pair of forceps. From the posterior end a return scan was made along the ventral half of the specimen back to the head. The anal fin, pelvic fin and pectoral fin were also lifted and expanded using a pair of forceps. The fish was then flipped using a pair of forceps at the caudal peduncle and the procedure was repeated on the right hand side of the specimen. Additional scans were made longitudinally down the fish if the entire depth of the fish could not be seen in a single pass. Any sea lice observed on the fish were removed and placed in a petri dish with saline solution.

Each individual bag was visually inspected after the removal of the fish for the presence of pre-adult or adult sea lice that may have become dislodged during handling. These "loose" sea lice were recorded on the data sheet with the data for the corresponding specimen and it was assumed that the lice had come from that individual.

Sea lice were identified using characteristics outlined by Kabata (1972) and Johnson and Albright (1991a). Sea lice observed on individual fish were identified as either non-motile chalimus (including copepodid), or motile pre-adults and adults. Sea lice identified as being non-motile were identified as either *Lepeophtheirus spp.* or *Caligus clemensi* and then identified as either copepodid or chalimus I, II, III or IV. Motile sea lice were identified as *Lepeophtheirus spp.* or *Caligus clemensi*, pre-adults or adults, and males or females.

Chalimus were identified to species primarily by characteristics of the frontal filament. However, size, shape, genital development, and leg development were used as secondary identifying characteristics for speciation as well as primary indicators for life stage identification. Motile sea lice were identified to species by the presence or absence of lunules. If lunules were absent the louse was identified as *Lepeophtheirus spp.* The louse was identified as *Caligus clemensi* if lunules were present.

Lepeophtheirus spp. sea lice found on captured specimens were not identified to species, but have been assumed to be *L. salmonis* due to the lack of documented infestation of Pacific salmon by other *Lepeophtheirus* species of sea lice (Jones and Nemec, 2004).

After microscopic analysis individual fish specimens were measured (fork length) in millimetres and weighed (recorded to the nearest tenth of a gram). Lengths and weights were also recorded on the data sheet with the specimen's corresponding sea lice analysis results. The fish were then returned to their respective individual bags and the fish from each site were repackaged in the large re-sealable bags. All samples were then refrozen.

In order to allow for quality assurance of sea lice identification, all sea lice were placed in labelled vials and preserved in 70% isopropyl alcohol. Ten percent of the deloused fish specimens were randomly selected by specimen number and retained. Both the preserved lice and retained deloused fish specimens will be kept at the office of Mainstream Biological Consulting in Campbell River for five years.

# 2.4 Data Analysis

Surface water quality data collected for temperature and salinity was summarized to report the minimum and maximum values as well as the calculated averages. The data was graphed for report presentation.

Beach seine fish sample composition was summarized by species and site for each week. The recorded fork lengths and weights of the sample population were summarized to present minimum and maximum values as well as calculated averages. Sea lice infestation rates, including the number of infested fish and the number of sea lice identified, were determined for the sample population. Prevalence, as defined as the number of host fish found to have one or more sea lice compared to the total number of host fish examined, was determined for the sample population. Abundance, as defined as the total number of sea lice observed compared to the total number of host fish examined, was also determined for sample population. The intensity of sea lice infestation, as described by the number of sea lice found on a single salmon was summarized.

Statistical analysis of the spatial and temporal distribution of sea lice was not conducted. Spatial and temporal analysis has been limited to the simple presentation and discussion of the number of sea lice found on fish specimens collected from each site during each of the sampling events.

### 3.0 Results

The following sections outline the results of beach seine collection and subsequent sea lice inspection of juvenile salmonids collected from Clayoquot Sound, BC, in 2017. Water quality field data is presented in Appendix I, beach seine fish capture data is included in Appendix II and data on the chum salmon sample population including sea lice lab analysis results are located in Appendix III

## 3.1 Water Quality Parameters

Surface measurements of temperature and salinity, taken during beach seining at each of the 17 sites during the three sample periods, are presented in Figures 3 and 4 respectively. The field data recorded at each site is included in Appendix I.

Surface water temperature readings taken at the 17 sample sites showed an overall gradual increase trend over the sample period (Figure 3). Recorded surface water temperatures ranged from a low of 7.0 °C recorded at site BS5 on April 11, 2017, to a high of 16.5 °C recorded at site BS3 on May 4, 2017 (Appendix I). Calculated weekly average surface water temperatures increased from 8.5 °C for April 10/11, 2017, to 13.0 °C for April 20/21, 2017 to the high of 14.3 °C for May 4/5, 2017.

Surface water salinity readings taken at the 17 sample sites decreased from April 10/11, 2017 to April 20/21, 2017 with the exception of Site BS3. Recorded surface water salinity ranged from a low of 3.9 ppt recorded at Site SI3 on May 4, 2017, to a high of 25.4 ppt recorded at site BS1 on April 10, 2017 (Figure 4). The calculated weekly average surface water salinity fluctuated from 18.8 ppt for April10/11, 2017, to 12.9 ppt for April 20/21, 2017, to 15.1 ppt for May 4/5, 2017 (Appendix I).

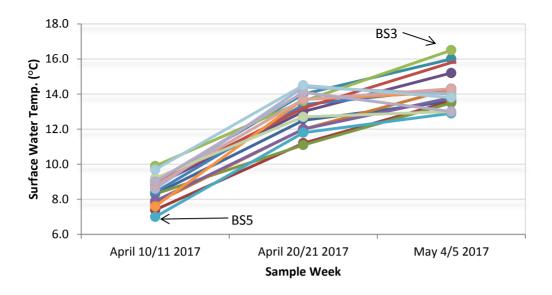



Figure 3: Surface water temperature recorded at 17 beach seine sites in Clayoquot Sound, BC between April 10, 2017 and May 5, 2017.

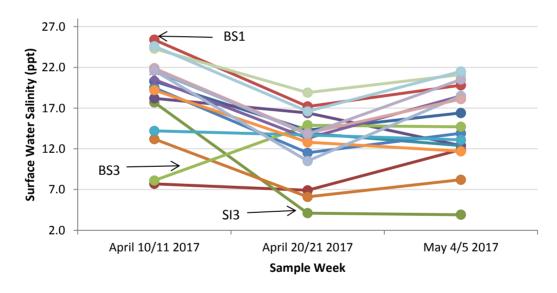



Figure 4: Salinity measurements recorded at 17 beach seine sites in Clayoquot Sound, BC between April 10, 2017 and May 5, 2017.

# 3.2 Fish Sample Composition

A total of 25,202 fish were captured during beach seine sampling conducted in Clayoquot Sound, BC in 2017 (Table 2). A summary of the total number of fish captured and collected as specimens at each site over the collection period can be found in Table 3. Totals of fish captured and collected specimens at each site over the entire collection period can be found in Appendix II. Only chum salmon, coho salmon, sockeye salmon and threespine stickleback were retained as sample specimens and underwent analysis for sea lice infestation. Of the 23,608 chum salmon captured, 1122 individual chum salmon (90.1 % of the total sample population) were retained and underwent lab analysis. Of the 90 coho salmon captured 84 (6.7 %) individuals were retained and of the 1,238 sockeye salmon captured, 38 (3.1 %) were retained and kept for lab analysis. The single threespine stickleback captured was retained and kept for analysis.

Chum salmon (*O. keta*) smolts were captured in significantly greater numbers than any other species. A total of 23,608 chum salmon were captured, representing 93.7 % of all captured salmonids. Sockeye salmon were the next most commonly caught species with a total capture of 1238 fish (4.9 %) followed by chinook and coho salmon (Table 2).

Table 2: The total of collected individuals of each fish species captured in Clayoquot Sound, BC in April and May 2017, and the percentage of the total capture population that they represent.

| Common Name                                   | Capture Totals (% of total capture population) | Collection<br>Totals | Collection % |
|-----------------------------------------------|------------------------------------------------|----------------------|--------------|
| chum salmon                                   | 23,608 (93.7 %)                                | 1,122                | 4.8          |
| coho salmon                                   | 90 (0.4 %)                                     | 84                   | 93.3         |
| chinook salmon<br>(not retained for analysis) | 265 (1.1 %)                                    | 0                    | 0            |
| sockeye salmon                                | 1238 (4.9 %)                                   | 38                   | 3.1          |
| threespine stickleback                        | 1 (0.004 %)                                    | 1                    | 100          |
| All species                                   | 25,202                                         | 1,245                | 4.9          |

Table 3: The number of captured fish (Capture Total) and the number of individual fish collected (Sample Total) from each of the 17 sample sites in Clayoquot Sound, BC in April and May 2017.

|       | Ch               | um              | Col              | Coho            |                  | nook            | Soc              | keye            | TS               | SB              | Contura          | Cample          |
|-------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|
| SITE  | Capture<br>Total | Sample<br>Total |
| SI1   | 1759             | 91              | 0                | 0               | 0                | 0               | 0                | 0               | 0                | 0               | 1759             | 91              |
| SI2   | 338              | 78              | 0                | 0               | 0                | 0               | 1                | 1               | 0                | 0               | 339              | 79              |
| SI3   | 34               | 34              | 41               | 35              | 18               | 0               | 1231             | 31              | 0                | 0               | 1324             | 100             |
| MC1   | 5035             | 90              | 0                | 0               | 1                | 0               | 6                | 6               | 0                | 0               | 5042             | 96              |
| МС3   | 6865             | 90              | 0                | 0               | 3                | 0               | 0                | 0               | 0                | 0               | 6868             | 90              |
| HI1   | 91               | 61              | 0                | 0               | 2                | 0               | 0                | 0               | 0                | 0               | 93               | 61              |
| HI2   | 4161             | 90              | 0                | 0               | 4                | 0               | 0                | 0               | 0                | 0               | 4165             | 90              |
| BS1   | 1119             | 119             | 6                | 6               | 0                | 0               | 0                | 0               | 0                | 0               | 1125             | 125             |
| BS2   | 848              | 63              | 0                | 0               | 52               | 0               | 0                | 0               | 0                | 0               | 900              | 63              |
| BS3   | 23               | 23              | 0                | 0               | 44               | 0               | 0                | 0               | 0                | 0               | 67               | 23              |
| BS4   | 89               | 34              | 22               | 22              | 1                | 0               | 0                | 0               | 0                | 0               | 112              | 56              |
| BS5   | 216              | 63              | 3                | 3               | 7                | 0               | 0                | 0               | 0                | 0               | 226              | 66              |
| BS6   | 2262             | 92              | 0                | 0               | 100              | 0               | 0                | 0               | 0                | 0               | 2362             | 92              |
| FC2   | 39               | 39              | 17               | 17              | 7                | 0               | 0                | 0               | 0                | 0               | 63               | 56              |
| FC3   | 299              | 60              | 0                | 0               | 15               | 0               | 0                | 0               | 0                | 0               | 314              | 60              |
| FC4   | 135              | 30              | 1                | 1               | 0                | 0               | 0                | 0               | 0                | 0               | 136              | 31              |
| FC5   | 295              | 65              | 0                | 0               | 11               | 0               | 0                | 0               | 1                | 1               | 307              | 66              |
| Total | 23608            | 1122            | 90               | 84              | 265              | 0               | 1238             | 38              | 1                | 1               | 25202            | 1245            |

## 3.3 Fish Sample Size Statistics

Summary statistics for the sample population of juvenile salmonids were completed for weight and fork length. This was completed for chum, coho and sockeye salmon.

#### 3.3.1 Chum salmon

Analysis of weight and fork length data was completed for the chum salmon sample population collected in Clayoquot Sound in 2017. The weight of 1122 chum smolts collected during the three sampling events ranged from 0.2 g to 3.9 g and averaged 0.7 g (SD = 0.4). The fork length of the chum smolts ranged from 24 mm to 66 mm and averaged 38 mm (SD = 4.8).

#### 3.3.2 Coho salmon

Analysis of weight and fork length data was completed for the coho salmon sample population collected in Clayoquot Sound in 2017. The weight of 84 coho smolts collected during the three sampling events ranged from 0.5 g to 17.6 g and averaged 9.3 g (SD = 4.1). The fork length of the chum smolts ranged from 33 mm to 110 mm and averaged 85 mm (SD = 16.6).

### 3.3.3 Sockeye salmon

Analysis of weight and fork length data was completed for the sockeye salmon sample population collected in Clayoquot Sound in 2017. The weight of 38 sockeye smolts collected during the three sampling events ranged from 1.8 g to 6.8 g and averaged 3.1 g (SD = 0.9). The fork length of the sockeye smolts ranged from 54 mm to 86 mm and averaged 62 mm (SD = 5.5).

#### 3.4 Sea Lice Infestation

The results of the laboratory analysis for the presence of sea lice on the sample population collected in Clayoquot Sound in 2017 are presented in Table 4. The data recorded for each fish in the sample population during lab analysis is included in Appendix III. A total of 1,245 samples were collected at 17 sites in Clayoquot Sound in 2017 and were inspected for sea lice infestation. A total of 234 individuals in the sample population were found to be infested with 381 sea lice (Table 4). A total of 222 chum smolts, eight coho salmon and four sockeye salmon were found to be infested with sea

lice (Table 4). This data reflects the identification of sea lice of either species (*L. salmonis and C. clemensi*) on inspected juvenile salmon.

Prevalence was defined as the number of fish found to be infested with one or more sea louse compared to the total number of fish. Abundance was defined as the total number of sea lice observed compared to the total number of fish. The sea lice prevalence in the sample population collected in Clayoquot Sound in 2017 was 18.8 %, and the abundance was 0.31 (Table 4). Sea lice counts of both species observed (*L. salmonis and C. clemensi*) were added together for the prevalence and abundance calculations for the entire sample population.

The intensity of sea lice infestation, as defined as the number of sea lice on a single sample, ranged from one louse found on 148 individuals to a maximum of seven lice found on two individuals. There were 53 samples infested with two lice, 19 infested by three lice, eight found to have four lice, one found to have five lice and three infested with six lice. The average intensity was calculated by dividing the total number of sea lice by the number of infested fish which was 1.6 for chum salmon, 2.6 for coho salmon and 1.5 for sockeye salmon (Table 4).

Table 4: Results of analysis for sea lice infestation on the sample population collected by beach seine in Clayoquot Sound, BC in 2017.

| Species                   | Sample<br>size<br>(n) | Total<br>number<br>of lice<br>observed | Total<br>number of<br>fish<br>infested | Prevalence<br>(%) | Abundance | Average<br>Intensity |
|---------------------------|-----------------------|----------------------------------------|----------------------------------------|-------------------|-----------|----------------------|
| chum                      | 1122                  | 354                                    | 222                                    | 19.8              | 0.32      | 1.6                  |
| coho                      | 84                    | 21                                     | 8                                      | 9.5               | 0.25      | 2.6                  |
| sockeye                   | 38                    | 6                                      | 4                                      | 10.5              | 0.16      | 1.5                  |
| threespine<br>stickleback | 1                     | 0                                      | 0                                      | 0                 | 0         | 0                    |
| Total                     | 1245                  | 381                                    | 234                                    | 18.8              | 0.31      | 1.6                  |

#### 3.4.2 Infestation Rates on Chum Salmon

A total of 1122 chum salmon collected at 17 sites within Clayoquot Sound over three sample weeks were inspected for sea lice infestation. The results of the laboratory analysis are presented in Table 5 for each sample period by site for chum salmon. A total of 222 chum salmon were found to be infested with 354 sea lice. This data reflects the identification of sea lice of either species (*L. salmonis and C. clemensi*) on inspected chum salmon. The largest number of chum salmon infested with sea lice (93 chum) and the greatest number of sea lice (169 sea lice) were found on samples collected on May 4/5, 2017 (Table 5). Site BS1 had the highest number of infested chum salmon (43) as well as the largest sample population size of 119 and site HI2 had the largest number of lice (78) found on 39 fish (Table 5). No lice were found on chum salmon collected from Sites SI3, BS4 and BS5.

Sea lice counts of both species observed (*L. salmonis and C. clemensi*) were added together for the presentation of prevalence, abundance and intensity calculations.

Prevalence was defined as the number of fish found to have one or more sea louse compared to the total number of fish. A total of 222 chum salmon were found to be infested with at least one louse. The prevalence of sea lice on the chum salmon sample (n=1122) collected in Clayoquot Sound in 2017 was 19.8 %. Sea lice prevalence was calculated by site and is presented in Table 6. Sea lice prevalence calculated by site was highly variable ranging from 0 % at Sites SI3, BS4 and BS5 to a high of 43.3 % at site HI2.

A total of 354 sea lice were identified during laboratory analysis of retained chum salmon. Abundance was defined as the total number of sea lice observed compared to the total number of fish. The abundance of sea lice on the chum salmon sample population (n=1122) collected in Clayoquot Sound in 2017 was 0.32. Sea lice abundance was calculated by site and is presented in Table 6. Sea lice abundance calculated by site was also highly variable ranging from 0 at Sites SI3, BS4 and BS5 to a high of 0.90 at HI2.

The intensity of sea lice infestation, as defined as the number of sea lice on a single salmon, ranged from one louse found on 142 individuals to a maximum of seven lice found on one juvenile chum salmon. There were 50 chum salmon infested with two lice,



Table 5: The number of sea lice found on chum salmon collected in Clayoquot Sound in 2017 summarized by the 17 sites where beach seining was conducted.

|       |                          |                          |              | Sar                      | nple Week                | (            |                          |                          |              |                          | TOTAL                    |              |
|-------|--------------------------|--------------------------|--------------|--------------------------|--------------------------|--------------|--------------------------|--------------------------|--------------|--------------------------|--------------------------|--------------|
|       | Apri                     | l 10/11, 20              | 17           | Apri                     | l 20/21, 20              | 17           | May                      | y 4/5, 2017              | 7            |                          | IOIAL                    |              |
| Site  | # of<br>Chum<br>Analyzed | # of<br>Infested<br>Chum | # of<br>Lice | # of<br>Chum<br>Analyzed | # of<br>Infested<br>Chum | # of<br>Lice | # of<br>Chum<br>Analyzed | # of<br>Infested<br>Chum | # of<br>Lice | # of<br>Chum<br>Analyzed | # of<br>Infested<br>Chum | # of<br>Lice |
| SI1   | 31                       | 11                       | 12           | 30                       | 5                        | 7            | 30                       | 17                       | 37           | 91                       | 33                       | 56           |
| SI2   | 18                       | 4                        | 4            | 30                       | 1                        | 1            | 30                       | 10                       | 13           | 78                       | 15                       | 18           |
| SI3   | 4                        | 0                        | 0            | 8                        | 0                        | 0            | 22                       | 0                        | 0            | 34                       | 0                        | 0            |
| MC1   | 30                       | 0                        | 0            | 30                       | 5                        | 12           | 30                       | 5                        | 10           | 90                       | 10                       | 22           |
| MC3   | 30                       | 2                        | 2            | 30                       | 14                       | 24           | 30                       | 14                       | 25           | 90                       | 30                       | 51           |
| HI1   | 30                       | 12                       | 19           | 1                        | 0                        | 0            | 30                       | 2                        | 3            | 61                       | 14                       | 22           |
| HI2   | 30                       | 6                        | 11           | 30                       | 12                       | 23           | 30                       | 21                       | 44           | 90                       | 39                       | 78           |
| BS1   | 54                       | 21                       | 28           | 35                       | 10                       | 15           | 30                       | 12                       | 20           | 119                      | 43                       | 63           |
| BS2   | 30                       | 3                        | 3            | 30                       | 5                        | 5            | 3                        | 1                        | 3            | 63                       | 9                        | 11           |
| BS3   | 6                        | 1                        | 1            | 1                        | 0                        | 0            | 16                       | 0                        | 0            | 23                       | 1                        | 1            |
| BS4   | 3                        | 0                        | 0            | 30                       | 0                        | 0            | 1                        | 0                        | 0            | 34                       | 0                        | 0            |
| BS5   | 4                        | 0                        | 0            | 30                       | 0                        | 0            | 29                       | 0                        | 0            | 63                       | 0                        | 0            |
| BS6   | 32                       | 3                        | 3            | 30                       | 3                        | 3            | 30                       | 7                        | 10           | 92                       | 13                       | 16           |
| FC2   | 25                       | 1                        | 1            | 13                       | 1                        | 2            | 1                        | 1                        | 1            | 39                       | 3                        | 4            |
| FC3   | 30                       | 2                        | 2            | 30                       | 2                        | 2            | 0                        | 0                        | 0            | 60                       | 4                        | 4            |
| FC4   | 0                        | 0                        | 0            | 30                       | 1                        | 1            | 0                        | 0                        | 0            | 30                       | 1                        | 1            |
| FC5   | 5                        | 0                        | 0            | 30                       | 4                        | 4            | 30                       | 3                        | 3            | 65                       | 7                        | 7            |
| TOTAL | 362                      | 66                       | 86           | 418                      | 63                       | 99           | 342                      | 93                       | 169          | 1122                     | 222                      | 354          |

Table 6: Calculated sea lice prevalence, abundance and intensity by site as determined for chum salmon collected in Clayoquot Sound, BC in 2017.

| Site  | # of Chum<br>Analyzed | # of<br>Infested<br>Chum | # of Lice | Sea Lice<br>Prevalence<br>(%) | Sea Lice<br>Abundance | Sea Lice<br>Intensity |
|-------|-----------------------|--------------------------|-----------|-------------------------------|-----------------------|-----------------------|
| SI1   | 91                    | 33                       | 56 36.3   |                               | 0.62                  | 1.7                   |
| SI2   | 78                    | 15                       | 18        | 19.2                          | 0.23                  | 1.2                   |
| SI3   | 34                    | 0                        | 0         | -                             | -                     | -                     |
| MC1   | 90                    | 10                       | 22        | 11.1                          | 0.24                  | 2.2                   |
| MC3   | 90                    | 30                       | 51        | 33.3                          | 0.60                  | 1.7                   |
| HI1   | 61                    | 14                       | 22        | 23.0                          | 0.36                  | 1.6                   |
| HI2   | 90                    | 39                       | 78        | 43.3                          | 0.90                  | 2.0                   |
| BS1   | 119                   | 43                       | 63        | 36.1                          | 0.53                  | 1.5                   |
| BS2   | 63                    | 9                        | 11        | 7.6                           | 0.17                  | 1.2                   |
| BS3   | 23                    | 1                        | 1         | 4.3                           | 0.04                  | 1.0                   |
| BS4   | 34                    | 0                        | 0         | -                             | -                     | -                     |
| BS5   | 63                    | 0                        | 0         | -                             | -                     | -                     |
| BS6   | 92                    | 13                       | 16        | 14.1                          | 0.17                  | 1.2                   |
| FC2   | 39                    | 3                        | 4         | 7.7                           | 0.10                  | 1.3                   |
| FC3   | 60                    | 4                        | 4         | 6.7                           | 0.10                  | 1.0                   |
| FC4   | 30                    | 1                        | 1         | 3.3                           | 0.03                  | 1.0                   |
| FC5   | 65                    | 7                        | 7         | 10.8                          | 0.11                  | 1.0                   |
| TOTAL | 1122                  | 222                      | 354       | 19.8                          | 0.32                  | 1.6                   |

#### 3.4.3 Infestation Rates of Coho Salmon

A total of 84 coho salmon collected at 17 sites within Clayoquot Sound over the three sample weeks were inspected for sea lice infestation. The results of the laboratory analysis are presented in Table 7 for each sample period by site for coho salmon. A total of eight coho salmon were found to be infested with 21 sea lice (Table 7). This data reflects the identification of sea lice of either species (*L. salmonis and C. clemensi*) on inspected coho salmon and these combined numbers were used to calculate prevalence, abundance and intensity calculations. Coho salmon infested with sea lice were all collected during the May 4/5, 2017 sample week and they were found on coho salmon collected at either Site BS1 or Site BS4 (Table 7).

Prevalence was defined as the number of fish found to have one or more sea louse compared to the total number of fish. A total of eight coho salmon were found to be infested with at least one louse. The prevalence of sea lice on the coho salmon sample (n=84) collected in Clayoquot Sound in 2017 was 9.5 %. Sea lice prevalence was calculated by site and is presented in Table 8. Of the two sites were infested coho salmon were collected, Site BS1 had the highest prevalence of 66.7 %.

A total of 21 sea lice were identified during laboratory analysis of retained coho salmon. Abundance was defined as the total number of sea lice observed compared to the total number of fish. The abundance of sea lice on the coho salmon sample population (n=84) collected in Clayoquot Sound in 2017 was 0.25. Sea lice abundance was calculated by site and is presented in Table 8. Of the two sites infested by sea lice BS1 has the highest calculated abundance at 2.50.

The intensity of sea lice infestation, as defined as the number of sea lice on a single salmon, ranged from one louse found on three individuals to a maximum of seven lice found on one juvenile coho salmon. There were three coho salmon infested with two lice and one coho found to be infested with five lice. The calculated sea lice intensity for the coho salmon sample population was 2.6.

Table 7: The number of sea lice found on coho salmon collected in Clayoquot Sound in 2017 summarized by the 17 sites where beach seining was conducted.

|       |                          |                          |              | Sar                      | mple Week                | (            |                          |                          |              |                          | TOTAL                    |              |
|-------|--------------------------|--------------------------|--------------|--------------------------|--------------------------|--------------|--------------------------|--------------------------|--------------|--------------------------|--------------------------|--------------|
|       | Apri                     | l 10/11, 20              | 17           | Apri                     | l 20/21, 20              | 17           | May                      | y 4/5, 2017              | 7            |                          | IOIAL                    |              |
| Site  | # of<br>Coho<br>Analyzed | # of<br>Infested<br>Coho | # of<br>Lice | # of<br>Coho<br>Analyzed | # of<br>Infested<br>Coho | # of<br>Lice | # of<br>Coho<br>Analyzed | # of<br>Infested<br>Coho | # of<br>Lice | # of<br>Coho<br>Analyzed | # of<br>Infested<br>Coho | # of<br>Lice |
| SI1   | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            |
| SI2   | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            |
| SI3   | 1                        | 0                        | 0            | 30                       | 0                        | 0            | 4                        | 0                        | 0            | 35                       | 0                        | 0            |
| MC1   | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            |
| MC3   | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            |
| HI1   | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            |
| HI2   | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            |
| BS1   | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 6                        | 4                        | 15           | 6                        | 4                        | 15           |
| BS2   | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            |
| BS3   | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            |
| BS4   | 0                        | 0                        | 0            | 12                       | 0                        | 0            | 10                       | 4                        | 6            | 22                       | 4                        | 6            |
| BS5   | 0                        | 0                        | 0            | 1                        | 0                        | 0            | 2                        | 0                        | 0            | 3                        | 0                        | 0            |
| BS6   | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            |
| FC2   | 0                        | 0                        | 0            | 16                       | 0                        | 0            | 1                        | 0                        | 0            | 17                       | 0                        | 0            |
| FC3   | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            |
| FC4   | 0                        | 0                        | 0            | 1                        | 0                        | 0            | 0                        | 0                        | 0            | 1                        | 0                        | 0            |
| FC5   | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            | 0                        | 0                        | 0            |
| TOTAL | 1                        | 0                        | 0            | 60                       | 0                        | 0            | 23                       | 8                        | 21           | 84                       | 8                        | 21           |

Table 8: Calculated sea lice prevalence, abundance and intensity by site as determined for coho salmon collected in Clayoquot Sound, BC in 2017.

| Site  | # of Coho<br>Analyzed | # of<br>Infested<br>Coho | # of Lice | Sea Lice<br>Prevalence<br>(%) | Sea Lice<br>Abundance | Sea Lice<br>Intensity |
|-------|-----------------------|--------------------------|-----------|-------------------------------|-----------------------|-----------------------|
| SI1   | 0                     | 0                        | 0         | 0                             | 0                     | 0                     |
| SI2   | 0                     | 0                        | 0         | 0                             | 0                     | 0                     |
| SI3   | 35                    | 0                        | 0         | 0                             | 0                     | 0                     |
| MC1   | 0                     | 0                        | 0         | 0                             | 0                     | 0                     |
| MC3   | 0                     | 0                        | 0         | 0                             | 0                     | 0                     |
| HI1   | 0                     | 0                        | 0         | 0                             | 0                     | 0                     |
| HI2   | 0                     | 0                        | 0         | 0                             | 0                     | 0                     |
| BS1   | 6                     | 4                        | 15        | 66.7                          | 2.50                  | 3.8                   |
| BS2   | 0                     | 0                        | 0         | 0                             | 0                     | 0                     |
| BS3   | 0                     | 0                        | 0         | 0                             | 0                     | 0                     |
| BS4   | 22                    | 4                        | 6         | 18.2                          | 0.27                  | 1.5                   |
| BS5   | 3                     | 0                        | 0         | 0                             | 0                     | 0                     |
| BS6   | 0                     | 0                        | 0         | 0                             | 0                     | 0                     |
| FC2   | 17                    | 0                        | 0         | 0                             | 0                     | 0                     |
| FC3   | 0                     | 0                        | 0         | 0                             | 0                     | 0                     |
| FC4   | 1                     | 0                        | 0         | 0                             | 0                     | 0                     |
| FC5   | 0                     | 0                        | 0         | 0                             | 0                     | 0                     |
| TOTAL | 84                    | 8                        | 21        | 9.5                           | 0.25                  | 2.6                   |

#### 3.4.4 Infestation Rates of Sockeye Salmon

A total of 38 sockeye salmon collected at 17 sites within Clayoquot Sound over three sample weeks were inspected for sea lice infestation. The results of the laboratory analysis are presented in Table 9 for each sample period by site for sockeye salmon. A total of four sockeye salmon were found to be infested with six sea lice, all *L. salmonis*. Sockeye salmon infested with sea lice were all collected during sampling completed on April 20/21, 2017 and May 4/5, 2017. They were collected from only two sites, MC1 and SI3 (Table 9).

Prevalence was defined as the number of fish found to have one or more sea louse compared to the total number of fish. A total of four sockeye salmon were found to be infested with at least one louse. The prevalence of sea lice on the sockeye salmon sample (n=38) collected in Clayoquot Sound in 2017 was 10.5 %. Sea lice prevalence was calculated by site and is presented in Table 10.

A total of six sea lice were identified during laboratory analysis of retained sockeye salmon. Abundance was defined as the total number of sea lice observed compared to the total number of fish. The abundance of sea lice on the sockeye salmon sample population (n=38) collected in Clayoquot Sound in 2017 was 0.16. Sea lice abundance was calculated by site and is presented in Table 10.

Of the two sites where infested sockeye salmon were collect, Site MC1 had the highest prevalence of 33.3 % and the highest abundance of 0.67 (Table 10).

The intensity of sea lice infestation, as defined as the number of sea lice on a single salmon, ranged from one louse found on three individuals to three lice found on one individual. Calculated sea lice intensity for the sockeye salmon sample population was 1.5 (Table 10).

Table 9: The number of sea lice found on sockeye salmon collected in Clayoquot Sound in 2017 summarized by the 17 sites where beach seining was conducted.

|       |                             |                             |              | Saı                         | mple Week                   |              |                             |                             |              |                             | TOTAL                       |              |
|-------|-----------------------------|-----------------------------|--------------|-----------------------------|-----------------------------|--------------|-----------------------------|-----------------------------|--------------|-----------------------------|-----------------------------|--------------|
|       | Apri                        | l 10/11, 201                | 17           | Apri                        | l 20/21, 201                | 17           | Ma                          | y 4/5, 2017                 |              |                             | IOIAL                       |              |
| Site  | # of<br>Sockeye<br>Analyzed | # of<br>Infested<br>Sockeye | # of<br>Lice | # of<br>Sockeye<br>Analyzed | # of<br>Infested<br>Sockeye | # of<br>Lice | # of<br>Sockeye<br>Analyzed | # of<br>Infested<br>Sockeye | # of<br>Lice | # of<br>Sockeye<br>Analyzed | # of<br>Infested<br>Sockeye | # of<br>Lice |
| SI1   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| SI2   | 0                           | 0                           | 0            | 1                           | 0                           | 0            | 0                           | 0                           | 0            | 1                           | 0                           | 0            |
| SI3   | 1                           | 0                           | 0            | 0                           | 0                           | 0            | 30                          | 2                           | 2            | 31                          | 2                           | 2            |
| MC1   | 2                           | 0                           | 0            | 4                           | 2                           | 4            | 0                           | 0                           | 0            | 6                           | 2                           | 4            |
| MC3   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| HI1   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| HI2   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| BS1   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| BS2   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| BS3   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| BS4   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| BS5   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| BS6   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| FC2   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| FC3   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| FC4   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| FC5   | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            | 0                           | 0                           | 0            |
| TOTAL | 3                           | 0                           | 0            | 5                           | 2                           | 4            | 30                          | 2                           | 2            | 38                          | 4                           | 6            |

Table 10: Calculated sea lice prevalence, abundance and intensity by site as determined for sockeye salmon collected in Clayoquot Sound, BC in 2017.

| Site  | # of<br>Sockeye<br>Analyzed | # of<br>Infested<br>Sockeye | # of Lice | Sea Lice<br>Prevalence<br>(%) | Sea Lice<br>Abundance | Sea Lice<br>Intensity |
|-------|-----------------------------|-----------------------------|-----------|-------------------------------|-----------------------|-----------------------|
| SI1   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| SI2   | 1                           | 0                           | 0         | 0                             | 0                     | 0                     |
| SI3   | 31                          | 2                           | 2         | 6.5                           | 0.06                  | 1.0                   |
| MC1   | 6                           | 2                           | 4         | 33.3                          | 0.67                  | 2.0                   |
| MC3   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| HI1   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| HI2   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| BS1   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| BS2   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| BS3   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| BS4   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| BS5   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| BS6   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| FC2   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| FC3   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| FC4   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| FC5   | 0                           | 0                           | 0         | 0                             | 0                     | 0                     |
| TOTAL | 38                          | 4                           | 6         | 10.5                          | 0.16                  | 1.5                   |

# 3.5 Infestation Rates by Sea Lice Species

A total of 360 *Lepeophtheirus salmonis* sea lice of various life stages were identified on 228 individuals and 21 *Caligus clemensi* sea lice were found on 18 of the 1,245 samples analyzed in the lab (Appendix III). There were 12 salmon that were infested with both *L. salmonis* and *C. clemensi*. The single threespine stickleback captured was found to not be infested by sea lice.

#### 3.5.1 Infestation Rates by Sea Lice Species on Chum Salmon

An analysis of the species of sea lice identified on the 222 infested chum salmon collected in Clayoquot Sound in 2017 was completed and is presented in Table 11. A total of 340 *Lepeophtheirus salmonis* sea lice of various life stages were identified on 216 juvenile chum salmon and 14 *Caligus clemensi* sea lice were found on 14 of the juvenile chum salmon analyzed in the lab (Appendix III). There were eight chum salmon infested with lice from both species.

Table 11: The number of sea lice in each life stage by species identified on chum salmon from Clayoquot Sound 2017. LEP = Lepeophtheirus salmonis CAL = Caligus clemensi

| Life Stage <sup>1</sup> | Number of lice |
|-------------------------|----------------|
| LEP Co                  | 178            |
| LEP C1                  | 50             |
| LEP C2                  | 48             |
| LEP C3                  | 39             |
| LEP C4                  | 18             |
| LEP PAM                 | 1              |
| LEP PAF                 | 0              |
| LEP AM                  | 6              |
| LEP AF                  | 0              |
| TOTAL LEP               | 340            |
| CAL Co                  | 5              |
| CAL C1                  | 6              |
| CAL C2                  | 2              |
| CAL C3                  | 0              |
| CAL C4                  | 1              |
| CAL PAM                 | 0              |
| CAL PAF                 | 0              |
| CAL AM                  | 0              |
| CAL AF                  | 0              |
| TOTAL CAL               | 14             |

<sup>&</sup>lt;sup>1</sup> Lice life stage codes: Co = copepodid, C1-4 = chalimus 1-4, PAM = pre-adult male, PAF = pre-adult female, AM = adult male, AF = adult female.

#### 3.5.2 Infestation Rates by Sea Lice Species on Coho Salmon

An analysis of the species of sea lice identified on the eight infested coho salmon collected in Clayoquot Sound in 2017 was completed and is presented in Table 12. A total of 14 *Lepeophtheirus salmonis* sea lice of various life stages were identified on eight juvenile coho salmon and seven *Caligus clemensi* sea lice were found on four of the juvenile coho salmon analyzed in the lab (Appendix III). Four of the coho salmon analyzed in the lab were infested with lice from both species.

Table 12: The number of sea lice in each life stage by species identified on coho salmon from Clayoquot Sound 2017. LEP = Lepeophtheirus salmonis CAL = Caligus clemensi

| Life Stage <sup>1</sup> | Number of lice |
|-------------------------|----------------|
| LEP Co                  | 6              |
| LEP C1                  | 4              |
| LEP C2                  | 3              |
| LEP C3                  | 0              |
| LEP C4                  | 0              |
| LEP PAM                 | 0              |
| LEP PAF                 | 0              |
| LEP AM                  | 1              |
| LEP AF                  | 0              |
| TOTAL LEP               | 14             |
| CAL Co                  | 5              |
| CAL C1                  | 1              |
| CAL C2                  | 0              |
| CAL C3                  | 1              |
| CAL C4                  | 0              |
| CAL PAM                 | 0              |
| CAL PAF                 | 0              |
| CAL AM                  | 0              |
| CAL AF                  | 0              |
| TOTAL CAL               | 7              |

<sup>&</sup>lt;sup>1</sup> Lice life stage codes: Co = copepodid, C1-4 = chalimus 1-4, PAM = pre-adult male, PAF = pre-adult female, AM = adult male, AF = adult female.

#### 3.5.3 Infestation Rates by Sea Lice Species on Sockeye Salmon

An analysis of the species of sea lice identified on the four infested sockeye salmon collected in Clayoquot Sound in 2017 and is presented in Table 13. A total of six *Lepeophtheirus salmonis* sea lice of various life stages were identified on four juvenile sockeye salmon analyzed in the lab (Appendix III). There were no *Caligus clemensi* observed on the sockeye salmon samples in Clayoquot Sound in 2017.

Table 13: The number of sea lice in each life stage by species identified on sockeye salmon from Clayoquot Sound 2017. LEP = Lepeophtheirus salmonis CAL = Caligus clemensi

| Life Stage <sup>1</sup> | Number of lice |
|-------------------------|----------------|
| LEP Co                  | 3              |
| LEP C1                  | 2              |
| LEP C2                  | 0              |
| LEP C3                  | 0              |
| LEP C4                  | 0              |
| LEP PAM                 | 0              |
| LEP PAF                 | 0              |
| LEP AM                  | 1              |
| LEP AF                  | 0              |
| TOTAL LEP               | 6              |

<sup>&</sup>lt;sup>1</sup> Lice life stage codes: Co = copepodid, C1-4 = chalimus 1-4, PAM = pre-adult male, PAF = pre-adult female, AM = adult male, AF = adult female.

## 4.0 Conclusions

This report presents the data from the third year of beach seining and sea lice analysis conducted for wild juvenile salmonid monitoring in Clayoquot Sound, BC by Cermaq Canada. This report is limited to the summary and presentation of the 2017 collected data.

A total of 1,244 juvenile salmonids and one threespine stickleback underwent analysis for sea lice infestation including 1,122 chum salmon, 84 coho salmon and 38 sockeye salmon. No Atlantic salmon (*Salmo salar*) were captured during sampling completed in Clayoquot Sound in 2017.

From the total sample population 234 samples were infested with 381 sea lice. The calculated prevalence for the total sample population was 18.8 % and the sea lice abundance was 0.31 for the sample population collected in Clayoquot Sound in 2017.

Chum salmon smolts were captured in significantly greater numbers than any other species. A total of 23,608 chum salmon were captured, representing 93.7 % of all captured samples. Of the 23,608 chum captured, 1,122 were kept for lab analysis for sea lice infestation. A total of 222 chum smolts were found to be infested with a total of 354 lice resulting in a calculated prevalence of 19.8 %, abundance of 0.32 and an average intensity of 1.6 for the chum salmon sample population.

A total of 90 coho salmon were captured, representing 0.4 % of all captured salmonids. Of the 90 coho captured, 84 were kept for lab analysis for sea lice infestation. A total of eight coho smolts were found to be infested with a total of 21 lice resulting in a calculated prevalence of 9.5 %, abundance of 0.25 and an average intensity of 2.6 for the coho salmon sample population.

A total of 1,238 sockeye salmon were captured, representing 4.9 % of all captured salmonids. Of the 1,238 sockeye captured, 38 were kept for lab analysis for sea lice infestation. A total of four sockeye smolts were found to be infested with a total of six lice resulting in a calculated prevalence of 10.5 %, abundance of 0.16 and an average intensity of 1.5 for the sockeye salmon sample population.

The single threespine stickleback was found to not be infested with sea lice.

A total of 360 *Lepeophtheirus salmonis* lice of various life stages were identified on 228 individual samples and 21 *Caligus clemensi* lice were identified on 18 fish. There were 12 salmonids infested with both sea lice species.

For the chum salmon sample population, a total of 340 *Lepeophtheirus salmonis* sea lice of various life stages were identified on 216 juvenile chum salmon and 14 *Caligus clemensi* sea lice were found on 14 of the juvenile chum salmon analyzed in the lab. There was eight juvenile chum salmon that were infested with both *L. salmonis* and *C. clemensi*.

For the coho salmon sample population, a total of 14 *Lepeophtheirus salmonis* sea lice of various life stages were identified on eight juvenile coho salmon and seven *Caligus clemensi* sea lice were found on four of the juvenile coho salmon analyzed in the lab. Four juvenile coho salmon were infested with both *L. salmonis* and *C. clemensi*.

For the sockeye salmon sample population, a total of six *Lepeophtheirus salmonis* sea lice of various life stages were identified on four juvenile sockeye salmon. There were no *Caligus clemensi* sea lice observed on the sockeye sample population.

## 5.0 References

- Healey M.C. 1991. Life history of chinook salmon (*Oncorhynchus tshawytscha*). In: Pacific Salmon Life Histories. C Grott, L Margolis (eds). UBC Press, Vancouver. Pp 313-393.
- Jones S. and A. Nemec. 2004. Pink Salmon Action Plan Research. Part II: Sea Lice on Juvenile Salmon and on Three-spine Sticklebacks in 2003. PSARC Working Paper H2004-01.
- Johnson S.C. and L.J. Albright. 1991a. The developmental stages of *Lepeophtheirus* salmonis (Kroyer, 1837) (Copepoda: Caligidae). Canadian Journal of Zoology 69: 929-950.
- Johnson S.C. and L.J. Albright. 1991b. Development, growth and survival of Lepeophtheirus salmonis (Copepoda: Caligidae) under laboratory conditions. Journal of the Marine Biological Association of the UK 71: 425-436.
- Kabata Z. 1972. Developmental stages of *Caligus clemensi* (Copepoda: Caligidae) from fishes of British Columbia. Journal of the Fisheries Research Board of Canada 29: 1571-1593.
- Kabata Z. 1974. The species of *Lepeophtheirus* (Copepoda: Caligidae), from fishes of British Columbia. Journal of the Fisheries Research Board of Canada 30: 729-759.
- Margolis L., J.R. Arthur. 1979. Synopsis of the parasites of fishes of Canada. Bulletin of the Fisheries Research Board of Canada, Number 199. Ottawa. 269 pages.
- McDonald T.E., and L. Margolis. 1995. Synopsis of the parasites of fishes of Canada (1978-1993). Canadian Special Publication of Fisheries and Aquatic Sciences No. 122. National Research Council of Canada, Ottawa. 265 pages.
- Morton A., R. Routledge, C. Peet and A. Ladwig. 2004. Sea Lice (*Lepeophtheirus salmonis*) infection rates on juvenile pink (*Oncorhynchus gorbuscha*) and chum (*Oncorhynchus keta*) salmon in the near shore marine environment of British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 61: 147-157.
- Parker R.R. and L. Margolis. 1964. A new species of parasitic copepod, *Caligus clemensi* sp. nov. (Clogoida: Caligidae), from pelagic fishes in the coastal waters of British Columbia. Journal of Fisheries Research Board of Canada 21: 873-889.
- Pollard W.R., G.F. Hartman, C. Groot, and P. Edgell. 1997. Field Identification of Coastal Juvenile Salmonids. Published by Harbour Publishing for the Federal Department of Fisheries and Oceans and MacMillan Bloedel Ltd. Madeira Park, BC Canada.
- Salo E.O. 1991. Life history of chum salmon (*Oncorhynchus keta*). In: Pacific Salmon Life Histories. C Grott, L Margolis (eds). UBC Press, Vancouver. Pp 233-309.
- Sandercock F.K. 1991. Life history of coho salmon (*Oncorhynchus kisutch*). In: Pacific Salmon Life Histories. C. Grott, L. Margolis (eds). UBC Press, Vancouver. Pp 397-445.

Appendix I – Field Data

| Date     | Time  | Site Name | Salinity (ppt)<br>0.2m | Temperature (°C)<br>0.2m |
|----------|-------|-----------|------------------------|--------------------------|
| 04/10/17 | 9:25  | SI-1      | 20.3                   | 8.3                      |
| 04/10/17 | 10:05 | SI-1      | 7.7                    | 7.4                      |
| 04/10/17 | 10:38 | SI-3      | 17.7                   | 8.3                      |
| 04/10/17 | 11:10 | MC-1      | 18.2                   | 8.8                      |
| 04/10/17 | 11:49 | MC-3      | 21.6                   | 9.0                      |
| 04/10/17 | 12:33 | HI-1      | 13.2                   | 7.8                      |
|          |       | HI-2      |                        |                          |
| 04/10/17 | 13:06 |           | 19.5                   | 8.4                      |
| 04/10/17 | 14:20 | BS-1      | 25.4                   | 8.9                      |
| 04/10/17 | 15:25 | BS-3      | 8.1                    | 9.9                      |
| 04/10/17 | 8:47  | BS-4      | 20.5                   | 7.9                      |
| 04/10/17 | 9:15  | BS-5      | 14.2                   | 7.0                      |
| 04/11/17 | 9:54  | FC-4      | 19.2                   | 7.6                      |
| 04/11/17 | 10:17 | FC-3      | 21.6                   | 8.6                      |
| 04/11/17 | 10:47 | FC-2      | 21.9                   | 8.8                      |
| 04/11/17 | 11:17 | FC-5      | 24.3                   | 9.2                      |
| 04/11/17 | 11:52 | BS-6      | 21.7                   | 9.0                      |
| 04/11/17 | 12:32 | BS-2      | 24.6                   | 9.7                      |
| 04/11/17 | 9:05  | SI-1      | 14.3                   | 12.5                     |
| 04/11/17 | 9:46  | SI-2      | 6.9                    | 11.2                     |
| 04/20/17 | 10:20 | SI-3      | 4.1                    | 11.1                     |
| 04/20/17 | 11:00 | MC-1      | 16.4                   | 13.0                     |
| 04/20/17 | 11:35 | MC-3      | 13.9                   | 14.0                     |
| 04/20/17 | 12:15 | HI-1      | 6.1                    | 12.0                     |
| 04/20/17 | 12:40 | HI-2      | 11.5                   | 13.4                     |
| 04/20/17 | 13:36 | BS-1      | 17.2                   | 13.2                     |
| 04/20/17 | 14:17 | BS-3      | 14.9                   | 13.6                     |
| 04/20/17 | 8:50  | BS-4      | 13.3                   | 12.0                     |
| 04/20/17 | 9:30  | BS-5      | 13.7                   | 11.8                     |
| 04/21/17 | 10:05 | FC-5      | 18.9                   | 12.7                     |
| 04/21/17 | 10:35 | FC-4      | 12.8                   | 13.7                     |
| 04/21/17 | 11:00 | FC-2      | 13.9                   | 13.7                     |
| 04/21/17 | 11:20 | FC-3      | 10.5                   | 14.4                     |
| 04/21/17 | 11:45 | BS-6      | 13.8                   | 14.1                     |
| 04/21/17 | 12:16 | BS-2      | 16.6                   | 14.5                     |
| 04/21/17 | 9:07  | SI-1      | 16.4                   | 13.6                     |
| 04/21/17 | 9:41  | SI-2      | 11.9                   | 15.1                     |
| 05/04/17 | 10:13 | SI-3      | 3.9                    | 13.5                     |
| 05/04/17 | 11:02 | MC-1      | 12.4                   | 15.2                     |
| 05/04/17 | 11:30 | MC-3      | 12.4                   | 16.0                     |
| 05/04/17 | 12:13 | HI-1      | 8.2                    | 14.3                     |
| 05/04/17 | 12:45 | HI-2      | 13.9                   | 14.3                     |
| 05/04/17 | 13:37 | BS-1      | 19.8                   | 15.8                     |
| 05/04/17 | 14:20 | BS-3      | 14.7                   | 16.5                     |
| 05/04/17 | 8:50  | BS-4      | 18.5                   | 13.8                     |
| 05/04/17 | 9:16  | BS-5      | 13.1                   | 12.9                     |

| Date     | Time  | Site Name | Salinity (ppt) | Temperature (°C) |
|----------|-------|-----------|----------------|------------------|
| Date     | Tille | Site Name | 0.2m           | 0.2m             |
| 05/05/17 | 9:50  | FC-5      | 21.1           | 13.0             |
| 05/05/17 | 10:13 | FC-4      | 11.7           | 14.1             |
| 05/05/17 | 10:35 | FC-2      | 18.1           | 14.3             |
| 05/05/17 | 10:48 | FC-3      | 18.5           | 14.0             |
| 05/05/17 | 11:11 | BS-6      | 20.5           | 13.0             |
| 05/05/17 | 11:40 | BS-2      | 21.5           | 13.8             |

## **Appendix II – Capture and Collection Sample Totals**

| Date     | Time  | Site<br>Name | Weather<br>Comments   | Tide<br>Stage | Pink<br>Captured | Pink<br>Retained | Chum<br>Captured | Chum<br>Retained | Coho<br>Captured | Coho<br>Retained | Chinook<br>Captured | Chinook<br>Retained | Sockeye<br>Captured | Sockeye<br>Retained | TSB<br>Captured | TSB<br>Retained | Salmonid<br>Mortalities | Comments                                                                                                                           |
|----------|-------|--------------|-----------------------|---------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------------|---------------------|---------------------|---------------------|-----------------|-----------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 04/10/17 | 9:25  | SI-1         | Sun and clouds.       | Low           | 0                | 0                | 350              | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 1                       | Two pipefish, one sculping one rockfish, one decorator crab. 20 chum taken for Fish Health. 30 chum taken for gill study.          |
| 04/10/17 | 10:05 | SI-2         | Sun and clouds.       | Low           | 0                | 0                | 18               | 18               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | One starry flounder, five unidentified flounder, two pipefish, one perch.                                                          |
| 04/10/17 | 10:38 | SI-3         | Sun and clouds.       | Low           | 0                | 0                | 4                | 4                | 1                | 1                | 0                   | 0                   | 1                   | 1                   | 0               | 0               | 0                       | Two mergansers on site. One flounder, one sculpir                                                                                  |
| 04/10/17 | 11:10 | MC-1         | Cloudy.               | Low           | 0                | 0                | 140              | 30               | 0                | 0                | 1                   | 0                   | 2                   | 2                   | 0               | 0               | 0                       | One crab.                                                                                                                          |
| 04/10/17 | 11:49 | MC-3         | Overcast, light rain. | Mid           | 0                | 0                | 505              | 30               | 0                | 0                | 2                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | 1 pipefish. 30 chum taker for gill study.                                                                                          |
| 04/10/17 | 12:33 | HI-1         | Light rain.           | Mid           | 0                | 0                | 46               | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | 16 chum taken for gill study.                                                                                                      |
| 04/10/17 | 13:06 | HI-2         | Light rain.           | High          | 0                | 0                | 355              | 30               | 0                | 0                | 4                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | 14 chum taken for gill study.                                                                                                      |
| 04/10/17 | 14:20 | BS-1         | Cloudy.               | High          | 0                | 0                | 520              | 30               | 0                | 0                | 0                   | 0                   | 24                  | 24                  | 0               | 0               | 20                      | Two flounder. 20 chum taken for Fish Health, 50 chum taken for gill study.                                                         |
| 04/10/17 | 15:25 | BS-3         | Sun and clouds.       | Mid           | 0                | 0                | 6                | 6                | 0                | 0                | 2                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Six steelhead (~200-300 mm)                                                                                                        |
| 04/11/17 | 8:47  | BS-4         | Sunny.                | Low           | 0                | 0                | 3                | 3                | 0                | 0                | 1                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Five pipefish, one sculpin<br>two flounder.                                                                                        |
| 04/11/17 | 9:15  | BS-5         | Sunny, calm.          | Mid           | 0                | 0                | 4                | 4                | 0                | 0                | 7                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Four seals, three mergansers, two bald eagles.                                                                                     |
| 04/11/17 | 9:54  | FC-4         | Sunny, calm.          | Mid           | 0                | 0                | 0                | 0                | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Strong tidal influence,<br>three seal, five<br>mergansers, one<br>steelhead (~200 mm), on<br>pipefish, one flounder.               |
| 04/11/17 | 10:17 | FC-3         | Sunny.                | Mid           | 0                | 0                | 192              | 30               | 0                | 0                | 15                  | 0                   | 0                   | 0                   | 0               | 0               | 0                       | 30 chum taken for gill study. Two decorator cra one goby, five pipefish, one surf perch, one dungeness crab, one roc crab, 1 sole. |
| 04/11/17 | 10:47 | FC-2         | Sunny, calm.          | Mid           | 0                | 0                | 25               | 25               | 0                | 0                | 7                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Two hermit crab, one sculpin, one flounder.                                                                                        |
| 04/11/17 | 11:17 | FC-5         | Sunny, calm.          | Mid           | 0                | 0                | 5                | 5                | 0                | 0                | 11                  | 0                   | 0                   | 0                   | 1               | 1               | 0                       | Set in different location due to tide and presence of black bear.                                                                  |
| 04/11/17 | 11:52 | BS-6         | Sunny, calm.          | Mid           | 0                | 0                | 1330             | 30               | 0                | 0                | 100                 | 0                   | 2                   | 2                   | 0               | 0               | 1                       | One sealion.                                                                                                                       |
| 04/11/17 | 12:32 | BS-2         | Sunny, calm.          | Mid           | 0                | 0                | 630              | 30               | 0                | 0                | 50                  | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Two red necked grebes, two cormorants, one loor                                                                                    |
| 04/20/17 | 9:05  | SI-1         | Calm, cloudy.         | High          | 0                | 0                | 500              | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | 20 chum taken for Fish Health. 30 chum taken fo gill study.                                                                        |

| Date     | Time  | Site<br>Name | Weather<br>Comments | Tide<br>Stage | Pink<br>Captured | Pink<br>Retained | Chum<br>Captured | Chum<br>Retained | Coho<br>Captured | Coho<br>Retained | Chinook<br>Captured | Chinook<br>Retained | Sockeye<br>Captured | Sockeye<br>Retained | TSB<br>Captured | TSB<br>Retained | Salmonid<br>Mortalities | Comments                                                                                                   |
|----------|-------|--------------|---------------------|---------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------------|---------------------|---------------------|---------------------|-----------------|-----------------|-------------------------|------------------------------------------------------------------------------------------------------------|
| 04/20/17 | 9:46  | SI-2         | Calm, cloudy.       | High          | 0                | 0                | 30               | 30               | 0                | 0                | 0                   | 0                   | 1                   | 1                   | 0               | 0               | 0                       | One pipefish, one shrimp.                                                                                  |
| 04/20/17 | 10:20 | SI-3         | Calm, cloudy.       | High          | 0                | 0                | 8                | 8                | 36               | 30               | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | One quillfish.                                                                                             |
| 04/20/17 | 11:00 | MC-1         | Calm, cloudy.       | Mid           | 0                | 0                | 4760             | 30               | 0                | 0                | 0                   | 0                   | 4                   | 4                   | 0               | 0               | 0                       | 30 chum taken for gill study.                                                                              |
| 04/20/17 | 11:35 | MC-3         | Calm, cloudy.       | Mid           | 0                | 0                | 2730             | 30               | 0                | 0                | 1                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | 14 striped perch, one rockfish, one flounder.                                                              |
| 04/20/17 | 12:15 | HI-1         | Rain, calm.         | Mid           | 0                | 0                | 1                | 1                | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | ,                                                                                                          |
| 04/20/17 | 12:40 | HI-2         | Calm, cloudy.       | Mid           | 0                | 0                | 3560             | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | One goby, one sea cucumber, 30 chum taken for gill study.                                                  |
| 04/20/17 | 13:36 | BS-1         | Calm, cloudy.       | Mid           | 0                | 0                | 450              | 30               | 0                | 0                | 0                   | 0                   | 5                   | 5                   | 0               | 0               | 0                       | 20 chum taken for Fish<br>Health, 50 chum taken for<br>gill study.                                         |
| 04/20/17 | 14:17 | BS-3         | Calm, cloudy.       | Mid           | 0                | 0                | 1                | 1                | 0                | 0                | 2                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Five quillfish, 10 tubesnout, five pipefish, one green crab, two juvenile rockfish, 20 flounder, 15 trout. |
| 04/21/17 | 8:50  | BS-4         | Calm, sunny.        | High          | 0                | 0                | 85               | 30               | 12               | 12               | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Two gunnel.                                                                                                |
| 04/21/17 | 9:30  | BS-5         | Calm, sunny.        | High          | 0                | 0                | 53               | 30               | 1                | 1                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       |                                                                                                            |
| 04/21/17 | 10:05 | FC-5         | Calm, sunny.        | High          | 0                | 0                | 210              | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | 30 chum taken for gill study.                                                                              |
| 04/21/17 | 10:35 | FC-4         | Calm, sunny.        | High          | 0                | 0                | 135              | 30               | 1                | 1                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | One pipefish.                                                                                              |
| 04/21/17 | 11:00 | FC-2         | Calm, sunny.        | Mid           | 0                | 0                | 13               | 13               | 16               | 16               | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       |                                                                                                            |
| 04/21/17 | 11:20 | FC-3         | Calm, sunny.        | Mid           | 0                | 0                | 107              | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Two flounder.                                                                                              |
| 04/21/17 | 11:45 | BS-6         | Calm, sunny.        | Mid           | 0                | 0                | 760              | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Two sculpin, one gunnel.                                                                                   |
| 04/21/17 | 12:16 | BS-2         | Calm, sunny.        | Mid           | 0                | 0                | 215              | 30               | 0                | 0                | 2                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Two sculpin, chinook caught were ~ 280 mm.                                                                 |
| 05/04/17 | 9:07  | SI-1         | Calm, cloudy.       | Mid           | 0                | 0                | 908              | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | 20 chum taken for Fish<br>Health, 30 chum taken for<br>gill samples. One rockfish.                         |
| 05/04/17 | 9:41  | SI-2         | Calm, cloudy.       | Mid           | 0                | 0                | 290              | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 2                       | Four shiner perch, 15 tubesnout and two cutthrout (~180mm).                                                |
| 05/04/17 | 10:13 | SI-3         | Calm, cloudy.       | Mid           | 0                | 0                | 23               | 23               | 4                | 4                | 18                  | 0                   | 1230                | 30                  | 0               | 0               | 0                       | 10 herring, one cutthroat (~300mm).                                                                        |
| 05/04/17 | 11:02 | MC-1         | Calm, cloudy.       | Mid           | 0                | 0                | 135              | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | One pile perch taken for Fish Health. 20 tubesnout, one shiner perch, 30 chum taken for Fish Health.       |
| 05/04/17 | 11:30 | MC-3         | Cloudy, cloudy/sun. | Low           | 0                | 0                | 3630             | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Two greenling, one sculpin, one shiner perch.                                                              |
| 05/04/17 | 12:13 | HI-1         | Calm, cloudy.       | Low           | 0                | 0                | 44               | 30               | 0                | 0                | 2                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | 14 chum taken for gill study.                                                                              |
| 05/04/17 | 12:45 | HI-2         | Calm, cloudy.       | Low           | 0                | 0                | 246              | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 1                       | 16 chum taken for gill study.                                                                              |
| 05/04/17 | 13:37 | BS-1         | Calm, cloudy.       | Low           | 0                | 0                | 120              | 30               | 6                | 6                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | 20 chum taken for Fish<br>Health, 50 chum taken for<br>gill study. Heavy chop<br>washing onshore.          |

| Date     | Time  | Site<br>Name | Weather<br>Comments | Tide<br>Stage | Pink<br>Captured | Pink<br>Retained | Chum<br>Captured | Chum<br>Retained | Coho<br>Captured | Coho<br>Retained | Chinook<br>Captured | Chinook<br>Retained | Sockeye<br>Captured | Sockeye<br>Retained | TSB<br>Captured | TSB<br>Retained | Salmonid<br>Mortalities | Comments                                                         |
|----------|-------|--------------|---------------------|---------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------------|---------------------|---------------------|---------------------|-----------------|-----------------|-------------------------|------------------------------------------------------------------|
| 05/04/17 | 14:20 | BS-3         | Calm, cloudy.       | Low           | 0                | 0                | 16               | 16               | 0                | 0                | 40                  | 0                   | 0                   | 0                   | 0               | 0               | 0                       | One herring, 10 green crab.                                      |
| 05/05/17 | 8:50  | BS-4         | Calm, rain.         | High          | 0                | 0                | 1                | 1                | 10               | 10               | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       |                                                                  |
| 05/05/17 | 9:16  | BS-5         | Calm, rain.         | High          | 0                | 0                | 160              | 30               | 2                | 2                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | One flounder.                                                    |
| 05/05/17 | 9:50  | FC-5         | Calm, rain.         | High          | 0                | 0                | 80               | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Two pile perch for Fish Health, one greenling, two shiner perch. |
| 05/05/17 | 10:13 | FC-4         | Calm, light rain.   | High          | 0                | 0                | 0                | 0                | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | No fish observed, strong tidal influence.                        |
| 05/05/17 | 10:35 | FC-2         | Calm, light rain.   | High          | 0                | 0                | 1                | 1                | 1                | 1                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | One cutthroat (~120mm).                                          |
| 05/05/17 | 10:48 | FC-3         | Calm, light rain.   | High          | 0                | 0                | 0                | 0                | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | One red rock crab.                                               |
| 05/05/17 | 11:11 | BS-6         | Calm, light rain.   | Mid           | 0                | 0                | 170              | 30               | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       |                                                                  |
| 05/05/17 | 11:40 | BS-2         | Wind, light rain.   | Mid           | 0                | 0                | 3                | 3                | 0                | 0                | 0                   | 0                   | 0                   | 0                   | 0               | 0               | 0                       | Two sculpin.                                                     |

## Appendix III – Sea Lice Analysis Data

| DATE                 | SITE         | FISH     | LENGTH   | WEIGHT     | LEP | CAL      | CAL | CAL | CAL | CAL | CAL | CAL_ | CAL | CAL |
|----------------------|--------------|----------|----------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|-----|-----|-----|-----|-----|------|-----|-----|
| COLLECTED            |              | SPECIES  | IN MM    | IN G       | Со  | C1  | C2  | C3  | C4  | PAM | PAF | AM  | AF  | Co       | C1  | C2  | C3  | C4  | PAM | PAF  | AM  | AF  |
| 04/10/17             | BS-1         | CM       | 38       | 0.5        | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1<br>BS-1 | CM       | 35       | 0.6        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             |              | CM       | 43       | 0.9        | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 38       | 0.8        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 58       | 2.3        | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1<br>BS-1 | CM<br>CM | 49       | 1.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | <u> </u> | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             |              |          | 58       | 2.3        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 1   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1<br>BS-1 | CM<br>CM | 55       | 1.9<br>3.2 | 0   | 0   | I   | 1   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17<br>04/10/17 | BS-1         | CM       | 64       |            | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
|                      |              |          | 61       | 2.8        | 0   | 0   | 4   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1<br>BS-1 | CM<br>CM | 43       | 1.2        | 0   | 0   | I   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             |              |          | 36       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 37<br>65 | 0.6        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1<br>BS-1 | CM<br>CM | 65<br>42 | 3.1        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
|                      |              |          | 42       | 1.0        | 0   | 0   |     | 0   |     | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 34       | 0.5        | 1   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 34       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | СМ       | 35       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 58       | 2.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | СМ       | 49       | 1.4        | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | СМ       | 44       | 1.0        | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 58       | 2.8        | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 1        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 45       | 1.3        | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 56       | 2.3        | 0   | 0   | 0   | 1   | 1   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | СМ       | 53       | 1.7        | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | СМ       | 39       | 0.7        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 35       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | СМ       | 37       | 0.6        | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | СМ       | 38       | 0.7        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | СМ       | 36       | 0.6        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | СМ       | 39       | 0.8        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 38       | 0.6        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 61       | 3.0        | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | СМ       | 35       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 33       | 0.5        | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 59       | 3.0        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 48       | 1.5        | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 53       | 2.0        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 49       | 1.5        | 2   | 0   | 0   | 1   | 1   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 66       | 3.9        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 42       | 1.0        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | СМ       | 38       | 0.7        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 35       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 33       | 0.4        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 35       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 38       | 0.6        | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/10/17             | BS-1         | CM       | 36       | 0.6        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/10/17             | BS-1         | CM              | 53              | 1.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | BS-1         | СМ              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | BS-1         | СМ              | 55              | 2.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | BS-1         | СМ              | 44              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | BS-1         | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | BS-1         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | BS-1         | СМ              | 52              | 2.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | BS-3         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | BS-3         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | BS-3         | CM              | 48              | 1.3            | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | BS-3         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | BS-3         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | BS-3         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 36              | 0.5            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 35              | 0.5            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1<br>⊔I-1 | CM<br>CM        | 35              | 0.4            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17<br>04/10/17 | HI-1<br>HI-1 | СМ              | 36<br>35        | 0.6<br>0.5     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 38              | 0.7            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 37              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 39              | 0.8            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 37              | 0.5            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 37              | 0.6            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | СМ              | 37              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 38              | 0.5            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 36              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1         | CM<br>CM        | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17<br>04/10/17 | HI-1<br>□ 1  | СМ              | 35              | 0.5            | I         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-1<br>HI-2 | CM              | 35<br>36        | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 37              | 0.6            | 3         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/10/17             | HI-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | СМ              | 35              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | СМ              | 36              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 33              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 37              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 38              | 0.6            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM<br>CM        | 35              | 0.5            | <u> </u>  | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17<br>04/10/17 | HI-2<br>HI-2 | CM              | 35<br>37        | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 37              | 0.6            | 3         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | СМ              | 33              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | СМ              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | HI-2         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17<br>04/10/17 | MC-1<br>MC-1 | CM<br>CM        | 35<br>34        | 0.6<br>0.5     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | СМ              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | СМ              | 31              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | СМ              | 32              | 0.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1         | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |

| DATE<br>COLLECTED    | SITE | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/10/17             | MC-1 | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1 | СМ              | 33              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1 | СМ              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1 | SK              | 86              | 6.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-1 | SK              | 60              | 2.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | СМ              | 33              | 0.4            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | СМ              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | СМ              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 30              | 0.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 34              | 0.4            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM<br>CM        | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             |      |                 | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          |            | 0         | 0         |           | 0         | 0         |           | 0         | 0          | 0           | <u> </u>  | 0         |
| 04/10/17<br>04/10/17 | MC-3 | CM<br>CM        | 35<br>35        | 0.5<br>0.4     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 36              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | MC-3 | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | CM              | 37              | 0.4            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | CM              | 37              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | CM              | 37              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | СМ              | 38              | 0.8            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17             | SI-1 | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |

| DATE<br>COLLECTED | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|-------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/10/17          | SI-1         | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | СМ              | 37              | 0.5            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | СМ              | 38              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | СМ              | 36              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | СМ              | 38              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | СМ              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | СМ              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | СМ              | 37              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | CM              | 38              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-1         | CM              | 36              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 40              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 35              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 39              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 36              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 37              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2<br>SI-2 | CM              | 32              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          |              | CM              | 37              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-2<br>SI-3 | CM<br>CM        | 39              | 0.6<br>0.5     | I         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-3         | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-3         | CM              | 39              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-3         | SK              | 58              | 2.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/10/17          | SI-3         | CO              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17          | BS-2         | CM              | 45              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17          | BS-2         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17          | BS-2         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17          | BS-2         | CM              | 42              | 0.9            | 0         | 0         | 0         | 0         | 1         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17          | BS-2         | CM              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17          | BS-2         | CM              | 40              | 0.8            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17          | BS-2         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17          | BS-2         | CM              | 41              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17          | BS-2         | CM              | 37              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17          | BS-2         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/11/17             | BS-2         | CM              | 34              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | СМ              | 41              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | СМ              | 40              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | СМ              | 40              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | CM              | 45              | 1.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | CM              | 41              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | CM              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | CM              | 44              | 1.1            | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | CM              | 39              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2         | CM              | 42              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-2<br>BS-4 | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17<br>04/11/17 | BS-4         | CM<br>CM        | 36<br>36        | 0.5<br>0.5     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-4         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-5         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-5         | CM              | 36              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-5         | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-5         | CM              | 34              | 0.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | СМ              | 34              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | СМ              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 42              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 43              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 48              | 1.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 38              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | U         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/11/17             | BS-6         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | СМ              | 53              | 1.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 38              | 0.7            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | СМ              | 36              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-6         | CM              | 49              | 1.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17<br>04/11/17 | FC-2<br>FC-2 | CM<br>CM        | 32              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2<br>FC-2 | CM              | 39<br>34        | 0.8<br>0.5     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | СМ              | 38              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 39              | 0.8            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 33              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17<br>04/11/17 | FC-2<br>FC-2 | CM<br>CM        | 34<br>37        | 0.5<br>0.7     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 37              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 38              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-2         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | СМ              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | СМ              | 38              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17<br>04/11/17 | FC-3<br>FC-3 | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | <b>୮</b> し-3 | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/11/17             | FC-3         | CM              | 36              | 0.5            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | СМ              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-3         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-5         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-5         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-5         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | FC-5         | CM              | 41              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17<br>04/11/17 | FC-5<br>FC-5 | CM<br>TSB       | 39              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/11/17             | BS-1         | CM              | 51<br>50        | 1.4<br>1.4     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 42              | 0.8            | 0         | 0         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 43              | 1.0            | 0         | 0         | 2         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 1         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 38              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 53              | 1.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 50              | 1.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 46              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | СМ              | 43              | 1.0            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | СМ              | 49              | 1.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | СМ              | 42              | 0.8            | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | СМ              | 43              | 1.0            | 0         | 0         | 0         | 1         | 1         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | СМ              | 44              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | СМ              | 46              | 1.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | СМ              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 46              | 1.1            | 0         | 0         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | СМ              | 56              | 2.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 43              | 0.9            | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 48              | 1.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 43              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1<br>BS-1 | CM<br>CM        | 38<br>45        | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 45<br>40        | 1.1<br>0.7     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | BS-1         | CM              | 35              |                | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | DO-1         | CIVI            | აⴢ              | 0.3            | 0         | U         | U         | U         | 0         | 0          | 0          | U         | U         | 0         | U         | 0         | 0         | 0         | 0          | U           | 0         | 0         |

| DATE<br>COLLECTED | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|-------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/20/17          | BS-1         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | BS-1         | CM              | 44              | 1.1            | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | BS-1         | СМ              | 49              | 1.3            | 0         | 1         | 0         | 0         | 1         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | BS-1         | СМ              | 33              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | BS-1         | СМ              | 42              | 0.8            | 0         | 0         | 1         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | BS-3         | СМ              | 36              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-1         | СМ              | 37              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | СМ              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 43              | 1.1            | 1         | 0         | 2         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 1         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 38              | 0.6            | 0         | 0         | 2         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 1         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 40              | 0.8            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2<br>HI-2 | CM<br>CM        | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 38<br>39        | 0.5<br>0.7     | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 42              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 44              | 0.9            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 38              | 0.7            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 40              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 38              | 0.7            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | СМ              | 34              | 0.5            | 4         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | СМ              | 38              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 1         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | СМ              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | СМ              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | СМ              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | СМ              | 36              | 0.5            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | HI-2         | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | MC-1         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | MC-1         | CM              | 37              | 0.7            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | MC-1         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | MC-1         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | MC-1         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | MC-1         | CM              | 36              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | MC-1         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | MC-1         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | MC-1         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | MC-1<br>MC-1 | CM<br>CM        | 38<br>39        | 0.6            | 0         | 0         | 3         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | MC-1         | CM              | 39              | 0.8            | <u> </u>  | 0         |           | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | MC-1         | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | IVIC-1       | CIVI            | 30              | 0.7            | U         | U         | U         | U         | 0         | 0          | U          | U         | U         | 0         | U         | 0         | 0         | 0         | 0          | U           | 0         | 0         |

| DATE<br>COLLECTED     | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|-----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/20/17              | MC-1         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | CM              | 35              | 0.5            | 4         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | СМ              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | CM              | 34              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | CM              | 37              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1<br>MC-1 | SK<br>SK        | 61              | 2.6<br>3.0     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | SK              | 63<br>65        | 3.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-1         | SK              | 65<br>63        | 3.0            | 3         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 36              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 34              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 38              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 38              | 0.6            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | СМ              | 46              | 1.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | СМ              | 40              | 0.9            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | СМ              | 43              | 0.9            | 0         | 0         | 3         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | СМ              | 35              | 0.5            | 3         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | СМ              | 40              | 0.9            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | СМ              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 41              | 0.9            | 0         | 0         | 1         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 40              | 0.8            | 3         | 3         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 40              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 41              | 0.8            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 43              | 1.0            | 0         | 0         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 39              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17<br>04/20/17  | MC-3<br>MC-3 | CM<br>CM        | 38<br>41        | 0.5            | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 39              | 0.9<br>0.5     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 35              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17              | MC-3         | CM              | 35              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| U <del>1</del> /2U/11 | IVIU-3       | CIVI            | JJ              | 0.0            | I         | U         | U         | U         | U         | U          | U          | U         | U         | U         | U         | U         | U         | U         | U          | U           | U         | U         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/20/17             | MC-3         | СМ              | 40              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | СМ              | 36              | 0.5            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | СМ              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 1         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | СМ              | 39              | 0.6            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | СМ              | 40              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 36              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 38              | 0.7            | 0         | 1         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17<br>04/20/17 | SI-1<br>SI-1 | CM<br>CM        | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 35<br>37        | 0.6<br>0.4     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 36              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-1         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | СМ              | 40              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | CM              | 37              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | CM              | 33              | 0.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2<br>SI-2 | CM<br>CM        | 34<br>34        | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17<br>04/20/17 | SI-2<br>SI-2 | CM              |                 | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | SI-2<br>SI-2 | CM              | 37<br>34        | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17             | <b>⊙</b> 1-∠ | CIVI            | 34              | 0.4            | U         | U         | U         | U         | 0         | 0          | U          | U         | U         | 0         | U         | 0         | 0         | 0         | 0          | U           | 0         | 0         |

| DATE<br>COLLECTED | SITE | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|-------------------|------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/20/17          | SI-2 | CM              | 33              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-2 | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-2 | СМ              | 34              | 0.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-2 | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-2 | СМ              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-2 | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-2 | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-2 | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-2 | CM              | 36              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-2 | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-2 | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-2 | SK              | 56              | 2.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CM              | 28              | 0.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CM              | 25              | 0.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CM              | 30              | 0.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CM              | 24              | 0.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CM              | 28              | 0.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 78              | 5.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 101             | 14.3           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 96              | 12.2           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 101             | 13.5           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 97              | 14.7           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 85              | 9.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | •         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 108             | 15.6           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 91              |                |           |           |           | 0         | 0         |            |            | •         | 0         |           |           | 0         |           | 0         |            | 0           |           |           |
| 04/20/17          | SI-3 | CO              | 78              | 11.6<br>6.7    | 0         | 0         | 0         |           | 0         | 0          | 0          | 0         | ······    | 0         | 0         |           | 0         | 0         | 0          |             | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 105             | 16.6           | 0         | 0         |           | 0         |           | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
|                   | •    |                 |                 |                | 0         |           | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         |           | 0         |           | 0          | 0           |           |           |
| 04/20/17          | SI-3 | CO              | 98              | 14.0           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 76              | 5.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 100             | 14.3           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 89              | 10.2           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 105             | 15.2           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 91              | 10.5           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 110             | 16.5           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 103             | 14.5           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 95              | 12.3           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 88              | 9.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 80              | 7.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 93              | 12.2           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 82              | 7.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 92              | 11.6           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 100             | 14.0           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 97              | 12.8           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 105             | 17.6           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | СО              | 105             | 14.2           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 88              | 9.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/20/17          | SI-3 | CO              | 100             | 15.5           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |

| DATE                 | SITE         | FISH     | LENGTH   | WEIGHT     | LEP | CAL | CAL | CAL | CAL | CAL | CAL | CAL_ | CAL | CAL |
|----------------------|--------------|----------|----------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|
| COLLECTED            |              | SPECIES  | IN MM    | IN G       | Со  | C1  | C2  | C3  | C4  | PAM | PAF | AM  | AF  | Со  | C1  | C2  | C3  | C4  | PAM | PAF  | AM  | AF  |
| 04/21/17             | BS-2         | CM       | 39       | 0.7        | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 35       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 45       | 1.1        | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 35       | 0.4        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17<br>04/21/17 | BS-2<br>BS-2 | CM<br>CM | 42       | 1.0        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 37<br>41 | 0.6<br>0.8 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 44       | 0.9        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |     | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 39       | 0.8        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 38       | 0.8        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 37       | 0.5        | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 40       | 0.7        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 33       | 0.4        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 43       | 0.9        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 43       | 1.0        | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 43       | 1.0        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | СМ       | 46       | 1.1        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | СМ       | 39       | 0.7        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | СМ       | 38       | 0.7        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | СМ       | 49       | 1.3        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | СМ       | 40       | 0.8        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | СМ       | 36       | 0.6        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | СМ       | 39       | 0.9        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | СМ       | 35       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | СМ       | 44       | 1.1        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | СМ       | 41       | 0.8        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 42       | 1.0        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | СМ       | 43       | 0.8        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 45       | 1.2        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-2         | CM       | 40       | 0.8        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 34       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 33       | 0.4        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 34       | 0.4        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 34       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17<br>04/21/17 | BS-4<br>BS-4 | CM<br>CM | 34<br>33 | 0.5<br>0.4 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 37       | 0.4        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 35       | 0.4        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 35       | 0.4        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 37       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 34       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 33       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 38       | 0.6        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 37       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 35       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 33       | 0.3        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | СМ       | 33       | 0.4        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | СМ       | 34       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | CM       | 33       | 0.5        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |
| 04/21/17             | BS-4         | СМ       | 37       | 0.7        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/21/17             | BS-4         | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | СМ              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | СМ              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CM              | 33              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CO              | 76              | 5.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CO              | 74              | 5.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CO              | 109             | 15.2           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CO              | 85              | 9.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CO              | 69              | 4.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17<br>04/21/17 | BS-4<br>BS-4 | CO              | 83<br>86        | 8.4<br>8.4     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CO              | 68              | 4.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CO              | 85              | 8.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CO              | 92              | 10.4           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CO              | 82              | 7.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-4         | CO              | 88              | 9.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | СМ              | 41              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | СМ              | 41              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | СМ              | 50              | 1.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | СМ              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | СМ              | 40              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 39              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17<br>04/21/17 | BS-5<br>BS-5 | CM<br>CM        | 34<br>35        | 0.5<br>0.5     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 33              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| UT/                  | ريوط         | CIVI            | 50              | 0.7            | U         | U         | U         | U         | U         | U          | U          | U         | U         | J         | U         | U         | U         | U         | J          | U           | U         | U         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/21/17             | BS-5         | CM              | 38              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | СМ              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-5         | CO              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | СМ              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | СМ              | 34              | 0.4            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | СМ              | 43              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17<br>04/21/17 | BS-6<br>BS-6 | CM<br>CM        | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 35<br>35        | 0.5<br>0.5     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 35              | 0.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 43              | 0.9            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 43              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 40              | 0.8            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | CM              | 49              | 1.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | СМ              | 41              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | СМ              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | СМ              | 38              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | СМ              | 42              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | BS-6         | СМ              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | СМ              | 45              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | СМ              | 46              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | СМ              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CM              | 47              | 1.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CM              | 42              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CM              | 53              | 1.8            | 0         | 0         | 1         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17<br>04/21/17 | FC-2<br>FC-2 | CM<br>CO        | 42<br>86        | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2<br>FC-2 | CO              | 81              | 8.9<br>7.8     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CO              | 75              | 6.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CO              | 75<br>72        | 5.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| U4/Z 1/ 1 /          | 1 0-2        | 00              | 1 4             | 5.0            | U         | U         | U         | U         | J         | U          | U          | U         | J         | U         | U         | U         | U         | U         | U          | U           | U         | U         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/21/17             | FC-2         | СО              | 78              | 6.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | СО              | 75              | 5.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CO              | 78              | 6.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CO              | 90              | 10.1           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CO              | 95              | 10.6           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CO              | 88              | 9.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | СО              | 93              | 10.5           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CO              | 94              | 10.9           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | СО              | 80              | 7.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | СО              | 77              | 6.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CO              | 69              | 4.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-2         | CO              | 84              | 9.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 36              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 40              | 0.7            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17<br>04/21/17 | FC-3<br>FC-3 | CM<br>CM        | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 34<br>38        | 0.5<br>0.5     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 38              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 41              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | СМ              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | СМ              | 49              | 1.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | СМ              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | СМ              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | СМ              | 37              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 40              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 32              | 0.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-3         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 41              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4<br>FC-4 | CM<br>CM        | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17<br>04/21/17 | FC-4<br>FC-4 | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4<br>FC-4 | CM              | 41<br>36        | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/1/             | ГС-4         | CIVI            | 30              | 0.7            | U         | U         | U         | U         | 0         | 0          | U          | U         | 0         | 0         | U         | 0         | 0         | 0         | 0          | U           | 0         | 0         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/21/17             | FC-4         | CM              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 41              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | СМ              | 44              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | СМ              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | СМ              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | СМ              | 44              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 43              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 50              | 1.6            | 0         | 0         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4<br>FC-4 | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17<br>04/21/17 | FC-4<br>FC-4 | CM<br>CM        | 34<br>35        | 0.5<br>0.5     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-4         | CO              | 100             | 13.7           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 43              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 39              | 0.8            | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 42              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 42              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | СМ              | 48              | 1.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | СМ              | 42              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | СМ              | 37              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | СМ              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | СМ              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 38              | 0.7            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 47              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 55              | 1.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 43              | 1.0            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 40              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 38              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 45              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 04/21/17             | FC-5         | CM              | 45              | 1.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 04/21/17             | FC-5         | СМ              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СМ              | 52              | 1.5            | 0         | 0         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СМ              | 50              | 1.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СМ              | 36              | 0.6            | 0         | 0         | 0         | 2         | 1         | 0          | 0          | 0         | 0         | 0         | 1         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СМ              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СМ              | 36              | 0.6            | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СМ              | 43              | 1.0            | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СМ              | 51              | 1.5            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СМ              | 43              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СМ              | 47              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СМ              | 45              | 1.1            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 44              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 45              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 40              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 45              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 53              | 1.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 59              | 2.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 1         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 41              | 0.9            | 0         | 0         | 0         | 1         | 2         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 50              | 1.6            | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 1         | 0         | 0         | 1         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 43              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 45              | 1.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1<br>BS-1 | CM              | 49              | 1.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17<br>05/04/17 | BS-1         | CM<br>CM        | 43              | 0.9<br>1.0     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 48              | 1.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 45              | 1.0            | 0         | 1         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 53              | 1.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 40              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CM              | 43              | 0.9            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СМ              | 46              | 1.2            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СО              | 90              | 11.5           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СО              | 93              | 13.3           | 1         | 0         | 2         | 0         | 0         | 0          | 0          | 1         | 0         | 0         | 0         | 0         | 1         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СО              | 87              | 8.6            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 1         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | СО              | 92              | 13.9           | 1         | 2         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 4         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CO              | 91              | 12.4           | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-1         | CO              | 89              | 10.4           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | CM              | 41              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | CM              | 37              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | CM              | 32              | 0.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 05/04/17             | BS-3         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | BS-3         | СМ              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 37              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17<br>05/04/17 | HI-1<br>HI-1 | CM<br>CM        | 39              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 35<br>35        | 0.5<br>0.5     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 36              | 0.5            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-1         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 40              | 0.8            | 4         | 1         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 42              | 1.0            | 1         | 0         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 39              | 0.7            | 1         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 1         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 41              | 0.8            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 39              | 0.6            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 44              | 1.0            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 38              | 0.5            | 3         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 44              | 0.9            | 1         | 2         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM<br>CM        | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17<br>05/04/17 | HI-2         | CM              | 38              | 0.6            | <u> </u>  | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2<br>HI-2 | CM              | 36              | 0.5<br>0.7     | 0         | 0<br>2    | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | ⊓1-∠         | CIVI            | 38              | U. <i>1</i>    | U         |           | U         | U         | 0         | 0          | U          | U         | U         | 0         | U         | 0         | 0         | 0         | 0          | U           | 0         | 0         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 05/04/17             | HI-2         | CM              | 40              | 0.6            | 1         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 43              | 0.7            | 1         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | СМ              | 36              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | СМ              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | СМ              | 48              | 1.4            | 1         | 1         | 1         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | СМ              | 39              | 0.7            | 3         | 0         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | СМ              | 39              | 0.6            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | СМ              | 36              | 0.5            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | СМ              | 35              | 0.4            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | СМ              | 36              | 0.5            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | СМ              | 36              | 0.5            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | HI-2         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 43              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 42              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 43              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 40              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 43              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 50              | 1.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 40              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         |           |
| 05/04/17<br>05/04/17 | MC-1<br>MC-1 | CM<br>CM        | 39<br>38        | 0.7<br>0.5     | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 42              | 0.9            | I         |           | •         | 0         | 0         |            | 0          |           | 0         | 0         | 0         | 0         |           |           | 0          | 0           |           | 0         |
| 05/04/17             | MC-1         | CM              | 53              | 1.9            | 3         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 41              | 0.8            | 0         | 0         | 1         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 43              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 44              | 1.1            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 40              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 41              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-1         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 50              | 1.5            | 0         | 2         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | СМ              | 44              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | СМ              | 43              | 0.9            | 0         | 0         | 0         | 0         | 1         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 05/04/17             | MC-3         | СМ              | 38              | 0.6            | 0         | 0         | 2         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | СМ              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 38              | 0.7            | 0         | 0         | 2         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | СМ              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | СМ              | 41              | 0.8            | 0         | 2         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 47              | 1.2            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | СМ              | 45              | 1.1            | 0         | 1         | 0         | 0         | 0         | 1          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 44              | 1.1            | 0         | 0         | 0         | 2         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 45              | 1.1            | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 36              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 40              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17<br>05/04/17 | MC-3<br>MC-3 | CM<br>CM        | 38              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 38<br>47        | 0.6<br>1.4     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 36              | 0.5            | 2         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 48              | 1.5            | 0         | 0         | 0         | 2         | 1         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 1         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | MC-3         | CM              | 38              | 0.8            | 0         | 0         | 2         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 43              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | СМ              | 48              | 1.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | СМ              | 44              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | СМ              | 43              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | СМ              | 41              | 1.0            | 0         | 1         | 1         | 5         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | СМ              | 46              | 1.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | СМ              | 38              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | СМ              | 43              | 1.0            | 0         | 0         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | СМ              | 42              | 1.0            | 0         | 0         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 40              | 0.8            | 0         | 0         | 2         | 0         | 1         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 43              | 1.1            | 0         | 0         | 1         | 0         | 1         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 48              | 1.3            | 3         | 0         | 0         | 1         | 2         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 49              | 1.4            | 2         | 0         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 51              | 1.7            | 0         | 0         | 0         | 1         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 42              | 0.9            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 47              | 1.2            | 0         | 0         | 0         | 0         | 1         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 38              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 44              | 1.0            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 51              | 1.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17<br>05/04/17 | SI-1<br>SI-1 | CM<br>CM        | 48<br>47        | 1.4<br>1.4     | 0         | 1         | 0         | 0         | 0         | 0          | 0          | <u> </u>  | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 44              | 1.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 46              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 1         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | CM              | 40              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 03/04/17             | 31° I        | Civi            | 41              | 0.5            | U         | U         | U         | U         | U         | U          | U          | U         | U         | U         | U         | U         | U         | U         | U          | U           | U         | U         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 05/04/17             | SI-1         | CM              | 49              | 1.5            | 0         | 1         | 0         | 1         | 0         | 0          | 0          | 1         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | СМ              | 50              | 1.6            | 0         | 0         | 0         | 0         | 1         | 0          | 0          | 1         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | СМ              | 45              | 1.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-1         | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 45              | 1.0            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 39              | 0.7            | 0         | 1         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 38              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 38              | 0.6            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 40              | 0.6            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 43              | 0.8            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17<br>05/04/17 | SI-2<br>SI-2 | CM<br>CM        | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 38<br>38        | 0.6<br>0.6     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 34              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 38              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 40              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | CM              | 37              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 41              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 41              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 38              | 0.6            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-2         | СМ              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 28              | 0.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 42              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 41              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 40              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3<br>SI-3 | CM<br>CM        | 38<br>39        | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17<br>05/04/17 | SI-3<br>SI-3 | CM              | •               | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 47<br>38        | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | <b>তা-</b> 3 | CIVI            | 38              | 0.6            | U         | U         | U         | U         | 0         | 0          | U          | U         | U         | 0         | U         | 0         | 0         | 0         | 0          | U           | 0         | 0         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 05/04/17             | SI-3         | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | СМ              | 42              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CO              | 62              | 3.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | СО              | 33              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | СО              | 34              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | CO              | 34              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 62              | 3.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 59              | 2.7            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 55              | 2.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 61              | 3.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 61              | 2.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 67              | 3.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17<br>05/04/17 | SI-3<br>SI-3 | SK<br>SK        | 62              | 3.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 59<br>59        | 2.9<br>2.5     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 65              | 3.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 57              | 2.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 63              | 3.7            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 60              | 3.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 53              | 1.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 60              | 2.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 62              | 2.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 73              | 5.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 65              | 3.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 59              | 2.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 65              | 3.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 61              | 2.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 62              | 3.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 64              | 3.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 57              | 3.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 57              | 2.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 61              | 3.3            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 64              | 3.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 56              | 2.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 58              | 2.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/04/17             | SI-3         | SK              | 63              | 3.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-2         | CM              | 37              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-2         | CM              | 39              | 0.7            | 0         | 0         | 3         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-2         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-4         | CO              | 98              | 10.8           | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17<br>05/05/17 | BS-4<br>BS-4 | CO              | 86<br>90        | 8.9<br>9.4     | <u> </u>  | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-4<br>BS-4 | CO              | 103             | 13.1           | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-4         | CO              | 89              | 9.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-4         | CO              | 81              | 7.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 03/03/17             | DO-4         | 00              | Οī              | 7.7            | U         | U         | U         | U         | J         | U          | U          | U         | J         | J         | U         | J         | U         | U         | J          | U           | J         | U         |

| DATE<br>COLLECTED    | SITE         | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|----------------------|--------------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 05/05/17             | BS-4         | СО              | 84              | 6.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-4         | СО              | 84              | 7.4            | 2         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-4         | CO              | 86              | 7.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-4         | СО              | 92              | 10.3           | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-4         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | СМ              | 39              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | СМ              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | СМ              | 33              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17<br>05/05/17 | BS-5<br>BS-5 | CM<br>CM        | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 37<br>38        | 0.5<br>0.6     | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CM              | 40              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | СМ              | 55              | 1.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | СМ              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | СМ              | 35              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CO              | 71              | 4.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-5         | CO              | 70              | 5.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-6         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-6         | CM              | 43              | 0.9            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-6         | CM              | 44              | 1.0            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-6         | CM              | 44              | 1.1            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-6         | CM              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-6         | CM              | 43              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-6         | CM              | 44              | 1.0            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-6         | CM              | 43              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-6         | CM              | 40              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-6<br>BS-6 | CM<br>CM        | 39<br>38        | 0.7            | 0<br>2    | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17<br>05/05/17 | BS-6         | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-6         | CM              | 35              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17             | BS-6         | CM              | 41              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 03/03/17             | טייטם        | Civi            | 41              | 0.9            | U         | U         | U         | U         | U         | U          | U          | U         | U         | U         | U         | U         | U         | U         | U          | U           | U         | U         |

| DATE<br>COLLECTED | SITE | FISH<br>SPECIES | LENGTH<br>IN MM | WEIGHT<br>IN G | LEP<br>Co | LEP<br>C1 | LEP<br>C2 | LEP<br>C3 | LEP<br>C4 | LEP<br>PAM | LEP<br>PAF | LEP<br>AM | LEP<br>AF | CAL<br>Co | CAL<br>C1 | CAL<br>C2 | CAL<br>C3 | CAL<br>C4 | CAL<br>PAM | CAL_<br>PAF | CAL<br>AM | CAL<br>AF |
|-------------------|------|-----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-------------|-----------|-----------|
| 05/05/17          | BS-6 | СМ              | 39              | 0.9            | 1         | 1         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | CM              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 38              | 0.7            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 41              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 35              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 42              | 0.9            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 33              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 47              | 1.2            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 36              | 0.6            | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 43              | 0.9            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 48              | 1.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | BS-6 | СМ              | 40              | 8.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-2 | СМ              | 48              | 1.3            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-2 | CO              | 80              | 6.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 37              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | CM              | 38              | 0.6            | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 39              | 0.8            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 56              | 2.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 44              | 1.0            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 36              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 37              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 38              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 34              | 0.5            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 38              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | СМ              | 36              | 0.6            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | CM              | 39              | 0.7            | 1         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | CM              | 35              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | CM              | 34              | 0.5            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |
| 05/05/17          | FC-5 | CM              | 34              | 0.4            | 0         | 0         | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0           | 0         | 0         |