

Wild Juvenile Salmonid Monitoring Program 2025

Clayoquot Sound, BC

Report Date: July 25, 2025

Prepared For:

*Cermaq Canada
203-919 Island Highway
Campbell River, BC
V9W 2C2*

MAINSTREAM
Biological Consulting
250·287·2462
www.mainstreambio.ca

Summary

Beach seine sampling was conducted on behalf of Cermaq Canada, with permission from Maaqtusiiis Hahoulthee Stewardship Society (MHSS) to conduct operations in Ahousaht Territory, in Clayoquot Sound, BC in 2025. Sampling was completed to monitor sea lice abundance, prevalence, and intensity on juvenile wild salmon within Clayoquot Sound, BC. This data report represents the tenth year of wild juvenile salmonid monitoring within Clayoquot Sound conducted solely by Cermaq Canada.

Sampling was conducted during four separate sampling events in April and May 2025, selected to coincide with the peak outmigration period of juvenile wild salmonids. Sampling was completed at 20 sites within Clayoquot Sound, BC in 2025. The sites were selected based on their locations relative to existing aquaculture sites located in the area. Sampling was completed with the support of the Ahousaht Guardian Program.

Total catch numbers of each salmonid species were recorded. Fifteen individuals or the total number of captured samples (if less than 15 were captured) were collected at each of the 20 sites during the sampling events. Water quality measurements including surface and one meter water temperature, salinity, and dissolved oxygen were recorded at each site during each sampling event.

Collected sample fish were frozen and analyzed in the lab for the presence of sea lice by Mainstream Biological Consulting. Sea lice observed on the individual fish specimens during laboratory analysis were initially identified as either *Lepeophtheirus spp.* or *Caligus sp.* These lice are assumed to be *L. salmonis* and *C. clemensi* due to the lack of documented infestation of Pacific salmon by other species. The lice were recorded by life stage and the sex of pre-adult or adult motile lice was determined.

This data summary report documents the observed sea lice infestation rate on retained wild juvenile salmon collected in Clayoquot Sound, BC in 2025. A total of 654 fish samples underwent lab analysis for sea lice infestation in 2025 including 620 chum salmon (*Oncorhynchus keta*) and 34 coho salmon (*Oncorhynchus kisutch*). No pink (*Oncorhynchus gorbuscha*), sockeye (*Oncorhynchus nerka*), or Atlantic salmon were captured during sampling completed in Clayoquot Sound, BC in 2025. The chinook salmon (*Oncorhynchus tshawytscha*) captured were not retained for sea lice analysis.

Chum salmon smolts were captured in significantly greater numbers than any other species. A total of 7161 chum salmon were captured, representing 98.9 % of all captured salmonids. Of the 7161 chum captured, 620 were retained for lab analysis for sea lice infestation. A total of 269 chum smolts were found to be infested with a total of 591 sea lice resulting in a calculated prevalence of 43.4 %, abundance of 0.95 and an average intensity of 2.2 for the chum salmon sample population.

A total of 44 coho salmon were captured, representing 0.6 % of all captured salmonids. Of the 44 coho captured, 34 were retained for lab analysis for sea lice infestation. A total of 12 coho smolts were found to be infested with a total of 22 sea lice resulting in a calculated prevalence of 35.3 %, abundance of 0.65 and an average intensity of 1.8 for the coho salmon sample population.

A total of 522 *Lepeophtheirus salmonis* sea lice of various life stages were identified on 249 juvenile salmon. A total of 91 *Caligus clemensi* sea lice of various life stages were identified on 70 juvenile salmon. Of the infested juvenile salmon, 38 juvenile salmon were found to be infested with both *L. salmonis* and *C. clemensi* sea lice (Appendix III).

A total of 502 *Lepeophtheirus salmonis* sea lice of various life stages were identified on 237 juvenile chum salmon and 89 *Caligus clemensi* sea lice of various life stages were identified on 69 juvenile chum salmon. Of the infested chum, 37 were found to be infested with both *L. salmonis* and *C. clemensi* sea lice.

A total of 20 *Lepeophtheirus salmonis* sea lice of various life stages were identified on 12 juvenile coho salmon and two *Caligus clemensi* sea lice of the copepodid life stage were identified on one juvenile coho salmon. Of the infested coho, one was found to be infested with both *L. salmonis* and *C. clemensi* sea lice.

Table of Contents

Summary.....	i
Table of Contents.....	iii
List of Figures	iv
List of Tables	iv
1.0 Introduction.....	1
2.0 Methods.....	2
2.1 Site Locations	2
2.2 Field Procedures.....	4
2.3 Laboratory Procedures	5
2.4 Data Analysis.....	6
3.0 Results	8
3.1 Water Quality Parameters.....	8
3.2 Fish Sample Composition	11
3.3 Fish Sample Size Statistics.....	13
3.3.1 <i>Chum Salmon</i>	13
3.3.1 <i>Coho Salmon</i>	13
3.4 Sea Lice Infestation Rates	13
3.4.1 <i>Infestation on Chum Salmon</i>	14
3.4.2 <i>Infestation on Coho Salmon</i>	16
3.5 Infestation by Sea Lice Species	18
3.5.1 <i>Infestation by Life Stage on Chum Salmon</i>	18
3.5.1 <i>Infestation by Life Stage on Coho Salmon</i>	20
4.0 References	22
Appendix I – Field Data.....	I
Appendix II – Capture and Collection Sample Totals	III
Appendix III – Sea Lice Analysis	VI

List of Figures

Figure 1: An overview map showing the location of Clayoquot Sound, BC on the west coast of Vancouver Island, BC	1
Figure 2: The locations of the 20 beach seine sites in Clayoquot Sound, BC sampled in 2025.....	3

List of Tables

Table 1: The site number and locations of the 20 beach seine sites where fish were collected for sea lice analysis in Clayoquot Sound, BC in 2025.....	2
Table 2: Surface water quality parameters collected during 2025 beach seine sampling in Clayoquot Sound, BC.....	9
Table 3: One meter water quality parameters collected during 2025 beach seine sampling in Clayoquot Sound, BC.....	10
Table 4: The total of collected individuals of each fish species captured in Clayoquot Sound, BC between April 11, 2025, and May 30, 2025, and the percentage of the total capture population that they represent.....	11
Table 5: The number of captured fish (Capture Total) and the number of individual fish collected (Sample Total) from each of the 20 sample sites in Clayoquot Sound, BC between April 10, 2025, and May 30, 2025.	12
Table 6: Average lengths of chum and coho salmon collected in Clayoquot Sound, BC in 2025, summarized by sampling event.....	13
Table 7: Average weights of chum and coho salmon collected in Clayoquot Sound, BC in 2025, summarized by sampling event.....	13
Table 8: Results of analysis for sea lice infestation on fish collected by beach seine in Clayoquot Sound, BC in 2025.	14
Table 9: Total number, prevalence, abundance, and intensity of sea lice infestation on chum salmon collected in Clayoquot Sound, BC in 2025 summarized by sampling site.	15
Table 10: Total number, prevalence, abundance, and intensity of sea lice infestation on coho salmon collected in Clayoquot Sound, BC in 2025 summarized by sampling site.	17
Table 11: The number of <i>Lepeophtheirus salmonis</i> and <i>Caligus clemensi</i> in each life stage identified on the chum salmon sample population from Clayoquot Sound, BC in 2025. LEP = <i>Lepeophtheirus salmonis</i> CAL= <i>Caligus clemensi</i>	18

Table 12: The number of sea lice found on chum salmon collected in Clayoquot Sound, BC in 2025 summarized by sampling site. LEP = <i>Lepeophtheirus salmonis</i> CAL= <i>Caligus clemensi</i>	19
Table 13: The number of <i>Lepeophtheirus salmonis</i> and <i>Caligus clemensi</i> in each life stage identified on the coho salmon sample population from Clayoquot Sound, BC in 2025. LEP = <i>Lepeophtheirus salmonis</i> CAL= <i>Caligus clemensi</i>	20
Table 14: The number of sea lice found on coho salmon collected in Clayoquot Sound, BC in 2025 summarized by sampling site. LEP = <i>Lepeophtheirus salmonis</i> CAL= <i>Caligus clemensi</i>	21

1.0 Introduction

Beach seine sampling was conducted on behalf of Cermaq Canada, with permission from Maaqtusiiis Hahoulthee Stewardship Society (MHSS) to conduct operations in Ahousaht Territory, in Clayoquot Sound, BC in 2025. Four sampling events were completed at 20 locations (Figure 1) between April 10 and May 30, 2025. Timing was selected to coincide with the estimated peak outmigration of juvenile salmonids in Clayoquot Sound, BC. Sampling was completed with the support of the Ahousaht Guardians.

Parasitic copepods from the family Caligidae (sea lice) found in the coastal waters of British Columbia are divided into two genera: *Lepeophtheirus* and *Caligus*. Eleven species of *Lepeophtheirus* have been identified infesting fish in the Pacific Ocean, while only one species of *Caligus* (*Caligus clemensi*) has been identified (Margolis and Arthur 1979; McDonald and Margolis, 1995). *C. clemensi* infest an extremely wide range of natural hosts in the marine environment including salmonids and non-salmonids; while *L. salmonis* natural hosts on the Pacific coast have been found to include Pacific salmon, threespine stickleback and Pacific herring. During this analysis, *Lepeophtheirus spp.* sea lice found on salmonid specimens were assumed to be *L. salmonis* due to the lack of documented infestations of Pacific salmon by other *Lepeophtheirus* lice species (Jones and Nemec, 2004).

Both Caligidae genera have similar life histories and developmental stages (Kabata, 1972; Johnson and Albright, 1991a). Sea lice hatch from eggs and go through two free-swimming naupili stages before developing into an infectious free-swimming copepodid. The copepodids attach to their host and develop through several chalimus stages. The chalimus are non-motile and are attached to their host by a frontal filament. The final chalimus stage terminates as the sea lice become motile and are no longer attached to their hosts by the frontal filament. The sea lice can now move freely on the fish as they develop through a pre-adult stage before becoming reproductively viable adults.

Water temperature and salinity are two environmental variables known to influence sea lice development, growth, survival and reproductive rate. In British Columbia, surface seawater temperatures range from approximately 6 °C to 13 °C. Research on sea lice abundance conducted in the Broughton Archipelago and elsewhere on the coast of British Columbia indicates that surface water temperature during the winter months does not appear to hinder the season abundance of *L. salmonis* (Saksida et al. 2007a, b). The rate of development and the generation times for *C. elongates* are strongly temperature dependent (Tully, 1992) and although this research has not been conducted, similar relationships with water temperature may be expected for *C. clemensi* (Jones and Johnson, 2015). Survival and development of *L. salmonis* is optimal in high salinity seawater. Under laboratory conditions copepodid survival was limited to conditions where salinity was greater than 10 ppt (Johnson and Albright, 1991b).

Cermaq Canada originally requested monitoring of sea lice abundance, prevalence, and intensity on wild juvenile salmon in Clayoquot Sound in support of Aquaculture Stewardship Council's Salmon Standard, but the monitoring program has evolved to be a standard annual monitoring event in cooperation with Ahousaht Fisheries.

This data summary report documents the observed sea lice infestation rates on retained samples collected in Clayoquot Sound in 2025. This represents the tenth year of wild juvenile salmonid monitoring in Clayoquot Sound conducted solely by Cermaq Canada. This monitoring program has been adapted from previous sea lice monitoring completed by the Clayoquot Sound Sea Lice Working Group and builds on the knowledge gained from the sampling they conducted between 2003 and 2011.

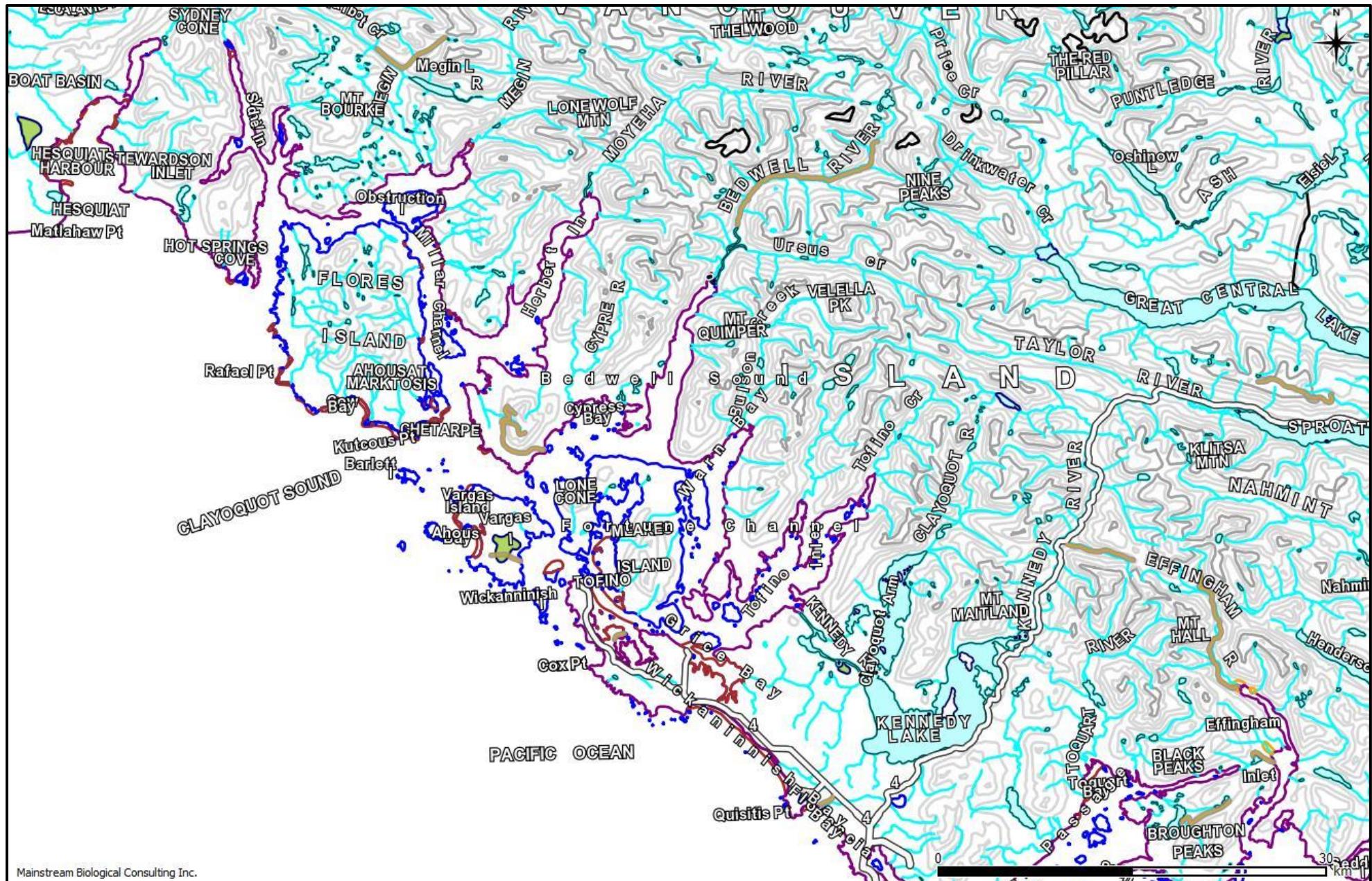


Figure 1: An overview map showing the location of Clayoquot Sound, BC on the west coast of Vancouver Island, BC.

2.0 Methods

Juvenile salmonids were collected from 20 sites in Clayoquot Sound, BC in 2025. Two additional sites were added to the sampling program in 2022. One site was added in Millar Channel and one site was added in Herbert Inlet to gather additional information and obtain a more robust geographic coverage of both areas. All sites were chosen based on their locations relative to existing Cermaq Canada aquaculture sites in the area (Figure 2). The sites were sampled four times in 2025, on April 10 and 11, April 29 and 30, May 8 and 9, and May 29 and 30. The final fifth sampling event planned for June 9 and 10, 2025, was cancelled due to the low capture numbers during sampling on the fourth sampling event, on May 29 and May 30, 2025.

2.1 Site Locations

The 20 beach seining sites consisted of three sites in Shelter Inlet, three sites in Millar Channel, three sites in Herbert Inlet, six sites in Bedwell Sound, four sites in Fortune Channel and one in Sydney Inlet. The approximate locations of the 20 beach seine sites are shown in Figure 2. GPS coordinates collected in the field for the sites are presented in Table 1.

Table 1: The site number and locations of the 20 beach seine sites where fish were collected for sea lice analysis in Clayoquot Sound, BC in 2025.

Site Name	Latitude	Longitude
BS1	49 14.520	125 56.995
BS2	49 13.460	125 55.316
BS3	49 16.765	125 54.061
BS4	49 16.078	125 50.219
BS5	49 19.560	125 48.761
BS6	49 14.282	125 50.034
FC1	49 12.656	125 46.192
FC2	49 12.621	125 45.205
FC3	49 14.039	125 47.085
FC4	49 14.326	125 44.583
HI1	49 23.212	125 57.087
HI2	49 20.162	125 56.878
HI3	49 16.977	126 00.654
MC1	49 22.598	126 03.801
MC3	49 19.890	126 04.619
MC4	49 18.808	126 04.882
SD1	49 26.332	126 15.290
SI1	49 23.908	126 10.888
SI2	49 24.136	126 09.976
SI3	49 26.280	126 04.755

CERMAQ

CLAYOQUOT WILD SMOLT
MONITORING PROGRAM

MAINSTREAM
Biological Consulting

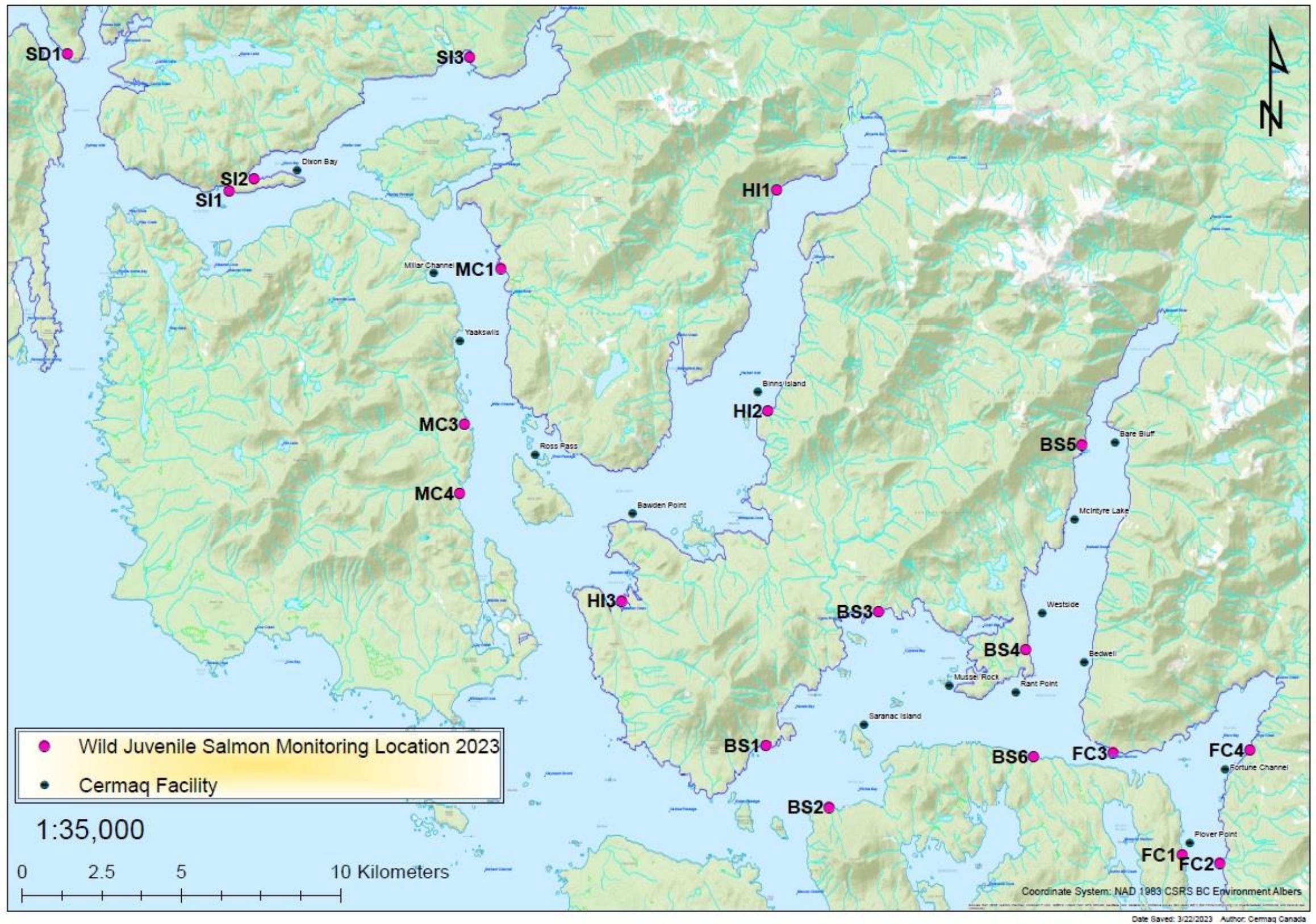


Figure 2: The locations of the 20 beach seine sites in Clayoquot Sound, BC sampled in 2025.

2.2 Field Procedures

Procedures used by Mainstream Biological Consulting during 2025 sampling were adapted from procedures for beach seining, fish collection and field data recording utilized by the Department of Fisheries and Oceans (DFO).

An Ahousaht Fisheries Guardian vessel was used to access sampling sites. A 150 ft (45.7 m) long by 12 ft (3.7 m) deep beach seine net was used to capture specimens. The net was constructed in three 50 ft (15.2 m) sections, with the centre bunt consisting of one-quarter inch diameter diamond mesh, and two side panels (wings) consisting of half-inch diameter diamond mesh. Floats were attached every 30 cm along the top-line and a lead line provided weight along the bottom of the net.

A three person crew conducted the beach seine sets. All beaches were approached slowly by boat and one crewmember was put ashore with one end of the net towline. The onshore crewmember held the towline at one side of the sample site, while the second crewmember ensured the net deployed smoothly off the bow or side of the boat as the third crewmember backed the boat in a wide semicircle towards the opposite side of the sample site. When the net was fully deployed, the second crewmember stepped into the shallow water with the towline or tossed it to the awaiting crewmember on shore. A slow retrieval of the net began immediately.

As the net was slowly retrieved, surface and one meter water quality data was collected for temperature, salinity and dissolved oxygen using a YSI Pro Quattro Probe. Five meter water quality data could not be obtained at most sites due to shallow site locations during sampling in April and May 2025.

Crewmembers retrieved the net evenly from opposite ends, ensuring that the lead line remained as close to the bottom as possible. Retrieved netting was piled on the beach above the water level. As the retrieval reached the net bunt, the lead line was retrieved at a faster rate than the floats to allow the netting of the bunt to form a bag under any captured fish. The lead line was then pulled up onto the beach above the water level. One crewmember worked their way around the outside of the net in the shallow water to ensure the floats stayed above the surface of the water. In this manner a small, shallow bag formed from the bunt of the net contained the captured fish in the water so that they could be sampled.

The crew members collected individual fish from the bunt to ensure that captured fish remained in the net for as short a period as possible. The net was manipulated as necessary in response to changing tides to ensure the captured fish remained in sufficient water to minimize contact with the net or with other fish.

Where possible, a total of 15 individuals from each target species were retained for sea lice infestation analysis. If less than 15 individuals of a target species were captured, all the captured fish were retained. Individual fish were haphazardly “swam” into an appropriately sized Whirlpac bag. Handling of fish was kept to a minimum.

Once all the fish for retention were collected, a total catch number was recorded for each species. Any fish remaining in the net were counted or estimated (if more than 300 individuals were present) and released. The total of fish remaining in the net was added to the number of retained individuals to calculate a total capture number for a given species.

A standardized field form was used to record the following information for each beach seine set:

- Site name or number
- Date
- Time at the end of the individual fish collection
- Comments on weather and oceanic conditions
- Total capture and retained fish numbers for each specimen group
- Water temperature (°C), salinity (ppt) and dissolved oxygen (mg/l) to one decimal place
- GPS coordinates
- The number of salmon mortalities.

Retained fish from each site were packaged separately in re-sealable bags and labelled with the site name or number, the date and sample numbers of each species. Sample bags were stored on ice in a cooler while on board the boat and transferred to a portable freezer on the support boat immediately following completion of the set.

Following each set the net was reloaded onto the boat. Crewmembers scanned the net for obvious holes, which were repaired immediately if found.

The above sampling procedures were repeated at each of the sample sites.

2.3 Laboratory Procedures

Laboratory procedures for sea lice analysis were adapted from procedures demonstrated by Sheila Dawe and Eliah Kim at the Pacific Biological Station in Nanaimo, BC, during sea lice identification training that was conducted on April 1, 2004. Additional sea lice identification training by Paul Callow was conducted at the Pacific Biological Station in September 2007.

Fish samples were thawed immediately prior to analysis. Individual fish were identified to species and counted. Results of the lab identification and count were compared to the reported data found on the field data sheets to identify any errors.

A standardized data sheet was used to record sea lice analysis results for each site. The site and week number, sample date and number of fish and specimen groups present were recorded. The date of the lab analysis was also noted.

Once thawed, individual fish were removed from their bag using a pair of forceps at the caudal peduncle and placed in a petri dish. Each bag was labelled with an individual fish identification number. Each fish was then scanned for the presence of sea lice under a stereoscopic dissection microscope. The microscope was set at a magnification of 20X for the preliminary survey of each fish sample, and magnification was increased to up to 40X during individual sea lice identification.

Microscopic analysis of each individual fish began at the anterior end of the right side of the specimen. The head was examined first, after which a scan was made along the dorsal half of the specimen working towards the posterior end and the tail. The dorsal fin and caudal fin were lifted and expanded with a pair of forceps to check for lice. From the posterior end a return scan was made along the ventral half of the specimen back to the head. The anal fin, pelvic fin and pectoral fin were lifted and expanded, and the operculum was lifted. The fish was then flipped using a pair of forceps at the caudal peduncle and the procedure was repeated on the opposite side of the specimen.

Additional scans were made longitudinally down the fish if the entire depth of the fish could not be seen in a single pass. Any sea lice observed on the fish were removed and placed in a petri dish of saline solution.

Each Whirlpac bag was visually inspected after the removal of the fish for the presence of pre-adult or adult sea lice that may have become dislodged during handling. Any sea lice found in the sample bags were identified under the microscope using the same characteristics outlined above. These “loose” sea lice were recorded on the data sheet with the data for the corresponding specimen and it was assumed that the lice had come from that individual.

Sea lice were identified using characteristics outlined by Kabata (1972) and Johnson and Albright (1991a). Sea lice observed on individual fish were identified as either non-motile chalimus (including copepodid), or motile pre-adults and adults. Non-motile sea lice were identified as one of two chalimus stages for *L. salmonis* (Hamre et al., 2013) or three chalimus stages for *C. clemensi*. Motile lice, either pre-adults or adults, were identified as either *L. salmonis* or *C. clemensi* and the sex of the louse was determined.

Chalimus were identified to species primarily by characteristics of the frontal filament. However, size, shape, genital development, and leg development were used as secondary identifying characteristics for speciation as well as primary indicators for life stage identification. Motile sea lice were identified to species by the presence or absence of lunules. If lunules were absent the louse was identified as *Lepeophtheirus spp.* The louse was identified as *Caligus spp.* if lunules were present.

Sea lice found on captured specimens have been assumed to be either *L. salmonis* or *C. clemensi* due to the lack of documented infestations of Pacific salmon by other species of sea lice (Jones and Nemec, 2004).

After microscopic analysis individual fish specimens were measured (fork length) in millimetres and weighed to the nearest tenth of a gram. Lengths and weights were recorded on the data sheet with the specimen’s corresponding sea lice analysis results. The fish were then returned to their respective individual bags and repackaged in the large re-sealable bags by site before being refrozen.

To allow for quality assurance of sea lice identification, all sea lice were placed in vials labelled with the corresponding fish identification number and preserved in 70% isopropyl alcohol. Ten percent of the deloused fish specimens were randomly selected by specimen number and retained. Both the preserved lice and retained deloused fish specimens will be kept at the office of Mainstream Biological Consulting in Campbell River for five years.

2.4 Data Analysis

Surface and one meter water quality data collected for temperature, salinity and dissolved oxygen was summarized to report the minimum and maximum values and averages for each sample week.

Beach seine fish sample composition was summarized by species and site for each sample period. The fork lengths and weights of the samples were summarized to present minimum and maximum values as well as averages. Sea lice infestation rates, including the overall number of infested fish and the number of sea lice identified, were determined for the sample population, and prevalence and abundance of sea lice were calculated. Prevalence was defined as the number of host fish found to have one or

more sea lice compared to the total number of host fish examined, while abundance was defined as the total number of sea lice observed compared to the total number of host fish examined. The intensity of sea lice infestation, as described by the average number of sea lice found on a single salmon infested was summarized. Average intensity was calculated by dividing the total number of sea lice identified by the number of infested fish.

Statistical analysis of the spatial and temporal distribution of sea lice was not conducted. Spatial and temporal analysis has been limited to the simple presentation and discussion of the number of sea lice found on fish specimens collected from each site during each of the sampling events.

3.0 Results

The following sections outline the results of beach seine collection and inspection of juvenile salmonids collected from Clayoquot Sound, BC in 2025. Water quality field data is presented in Appendix I. Beach seine fish capture data is included in Appendix II and data on the fish sample population including sea lice lab analysis results are listed in Appendix III.

3.1 Water Quality Parameters

Surface and one meter depth measurements of water temperature salinity and dissolved oxygen taken during beach seining at each of the 20 sites during the four sample periods are summarized in Table 2 and Table 3 respectively and the complete dataset is included in Appendix I.

Recorded surface water temperature ranged from a low of 6.5 °C recorded at BS5 on April 11, 2025, to a high of 15.5 °C recorded at MC1 on May 29, 2025 (Table 2; Appendix I). Average surface water temperature increased over the sampling period. Recorded surface water salinity ranged from a low of 4.6 ppt recorded at SI3 on April 10, 2025, to a high of 29.5 ppt recorded at BS2 on May 29, 2025 (Table 2; Appendix I). Average surface water salinity initially increased and then remained relatively constant during the final two sampling periods. Recorded surface water dissolved oxygen ranged from a low of 7.8 mg/L recorded at FC3 on May 30, 2025, to a high of 12.3 mg/L recorded at BS3 on May 30, 2025 (Table 2; Appendix I). Average surface dissolved oxygen decreased over the sampling period.

Recorded one meter water temperature ranged from a low of 6.6 °C recorded at BS5 on April 11, 2025, to a high of 14.5 °C recorded at HI1 on May 29, 2025 (Table 3; Appendix I). Average one meter water temperature increased over the sampling period.

Recorded one meter water salinity ranged from a low of 7.6 ppt recorded at BS5 on April 11, 2025, to a high of 29.8 ppt recorded at BS2 on May 29, 2025 (Table 3; Appendix I). Average one meter water salinity increased over the sampling period. Recorded one meter dissolved oxygen ranged from a low of 8.0 mg/L recorded at SI2 on May 29, 2025, to a high of 11.7 mg/L recorded at BS5 on April 11, 2025 (Table 3; Appendix I). Average one meter dissolved oxygen decreased over the sampling period.

Table 2: Surface water quality parameters collected during 2025 beach seine sampling in Clayoquot Sound, BC.

Site	April 10/11			April 29/30			May 8/9			May 29/30		
	Salinity (ppt)	Temp. (°C)	DO (mg/L)	Salinity (ppt)	Temp. (°C)	DO (mg/L)	Salinity (ppt)	Temp. (°C)	DO (mg/L)	Salinity (ppt)	Temp. (°C)	DO (mg/L)
BS1	22.1	9.3	9.4	23.8	11.2	9.9	28.2	11.8	10.2	28.7	13.0	9.2
BS2	21.4	9.7	11.1	24.0	11.0	9.6	27.9	11.8	10.2	29.5	12.5	8.1
BS3	9.2	7.2	11.1	22.2	10.6	9.2	27.2	11.5	10.0	16.8	12.2	12.3
BS4	7.6	7.5	11.6	19.3	11.6	11.1	24.6	11.1	10.4	16.2	13.4	8.4
BS5	5.0	6.5	11.9	5.4	9.6	11.2	20.8	10.4	10.2	8.0	11.8	9.4
BS6	9.0	9.4	11.7	23.8	10.5	9.0	25.3	11.3	9.0	28.4	12.1	8.3
FC1	9.2	9.2	11.2	22.5	10.7	9.3	26.2	11.6	9.5	27.8	12.3	8.4
FC2	19.6	9.0	9.9	22.6	11.0	9.5	26.0	11.6	9.3	27.6	12.8	8.6
FC3	21.6	9.5	9.8	23.0	10.6	9.3	28.1	11.0	8.9	28.5	11.9	7.8
FC4	17.4	8.6	10.0	18.3	10.6	9.7	24.8	11.8	9.7	24.2	12.8	8.7
HI1	-	-	-	10.6	13.1	10.3	15.4	12.6	9.3	24.8	14.8	8.5
HI2	-	-	-	21.3	13.1	9.8	21.0	13.4	8.9	24.2	15.5	8.3
HI3	-	-	-	23.4	11.7	10.7	28.5	13.1	9.9	27.5	13.7	8.9
MC1	-	-	-	23.7	12.2	11.4	27.4	12.9	9.1	18.4	14.9	9.0
MC3	18.3	10.0	11.0	22.0	11.0	11.4	27.6	12.7	8.9	25.2	12.7	8.4
MC4	15.5	9.6	10.7	23.8	11.0	9.5	27.9	12.8	9.4	21.5	11.8	8.3
SD1	15.3	9.5	10.1	23.2	11.5	9.8	28.4	12.6	9.1	22.9	14.1	8.6
SI1	19.9	9.3	11.3	24.9	10.9	10.4	29.0	11.6	9.9	28.4	12.8	8.8
SI2	11.6	8.9	11.2	24.5	11.2	10.7	27.8	11.6	10.2	29.1	12.4	8.4
SI3	4.6	8.4	11.1	22.8	11.3	11.3	23.8	12.6	9.7	11.7	13.7	8.9
Average	14.2	8.9	10.8	21.3	11.2	10.2	25.8	12.0	9.6	23.5	13.1	8.8

Table 3: One meter water quality parameters collected during 2025 beach seine sampling in Clayoquot Sound, BC.

Site	April 10/11			April 29/30			May 8/9			May 29/30		
	Salinity (ppt)	Temp. (°C)	DO (mg/L)	Salinity (ppt)	Temp. (°C)	DO (mg/L)	Salinity (ppt)	Temp. (°C)	DO (mg/L)	Salinity (ppt)	Temp. (°C)	DO (mg/L)
BS1	22.1	9.3	9.6	24.0	11.1	9.9	28.3	11.7	10.4	28.9	12.8	8.9
BS2	21.5	9.7	11.0	24.0	11.0	9.6	28.1	11.6	10.3	29.8	12.3	8.2
BS3	20.4	8.6	9.8	23.2	10.7	9.2	27.6	11.2	9.6	27.6	12.4	8.2
BS4	13.8	7.7	10.7	20.4	11.1	10.2	24.7	11.2	10.2	-	-	-
BS5	7.6	6.6	11.7	19.9	10.7	10.5	-	-	-	-	-	-
BS6	19.9	8.8	10.6	23.8	10.5	8.9	25.4	11.3	10.2	-	-	-
FC1	17.7	9.2	10.8	22.6	10.7	9.3	26.3	11.3	9.7	-	-	-
FC2	19.7	9.0	9.6	22.6	10.9	9.5	-	-	-	-	-	-
FC3	22.0	9.6	9.6	23.0	10.6	9.2	-	-	-	-	-	-
FC4	17.9	8.6	10.0	22.2	10.8	9.2	26.0	11.8	10.1	-	-	-
HI1	-	-	-	17.2	12.8	10.2	25.3	12.8	9.3	26.9	13.7	8.5
HI2	-	-	-	21.4	13.1	9.9	27.8	12.4	10.1	27.2	14.0	8.9
HI3	-	-	-	23.6	11.4	11.0	29.3	11.6	11.5	27.7	13.4	8.5
MC1	-	-	-	23.8	11.6	11.3	27.8	12.8	9.3	24.6	14.5	8.9
MC3	19.2	10.0	11.1	23.3	11.1	10.3	29.0	11.8	9.5	27.3	12.6	8.3
MC4	16.8	9.7	10.8	23.9	10.8	9.8	27.9	12.7	9.3	29.1	11.8	8.1
SD1	15.5	9.6	10.2	23.7	12.1	10.2	29.4	12.1	9.6	27.6	13.6	9.1
SI1	20.8	9.3	11.0	24.9	10.8	11.3	29.3	11.5	9.9	29.4	12.1	8.6
SI2	12.5	8.9	11.0	25.0	11.0	10.7	28.0	11.4	10.3	29.5	11.7	8.0
SI3	11.8	8.4	11.6	23.8	11.2	11.0	27.7	12.6	10.1	25.3	12.6	8.6
Average	17.5	8.9	10.6	22.8	11.2	10.1	27.5	11.9	10.0	27.8	12.9	8.5

3.2 Fish Sample Composition

A total of 7240 fish were captured during beach seine sampling conducted in Clayoquot Sound, BC, in 2025 (Table 4). A summary of the total number of fish captured and collected as specimens at each site over the collection period is presented in Table 5, with a complete dataset provided in Appendix II. Of the 7240 captured, 620 individual chum salmon and 34 individual coho salmon were retained for lab analysis (Table 4). No pink or Atlantic salmon were captured during sampling completed in Clayoquot Sound, BC in 2025. The chinook salmon (*Oncorhynchus tshawytscha*) captured were not retained for sea lice analysis. Chum salmon (*O. keta*) smolts were captured in significantly greater numbers than any other species. A total of 7161 chum salmon were captured, representing 98.9 % of all captured fish.

Table 4: The total of collected individuals of each fish species captured in Clayoquot Sound, BC between April 11, 2025 and May 30, 2025, and the percentage of the total capture population that they represent.

Common Name	Capture Totals (% of total capture population)	Collection Totals	Collection %
chum salmon	7161 (98.9 %)	620	8.7
chinook salmon	35 (0.5 %)	0	0.0
sockeye salmon	0 (0.0 %)	0	0.0
coho salmon	44 (0.6 %)	34	77.3
pink salmon	0 (0.0 %)	0	0.0
Atlantic salmon	0 (0.0 %)	0	0.0
All species	7240	654	9.0

Table 5: The number of captured fish (Capture Total) and the number of individual fish collected (Sample Total) from each of the 20 sample sites in Clayoquot Sound, BC between April 10, 2025, and May 30, 2025.

Site	Chum		Coho		Chinook		Sockeye		Pink		Capture Total	Sample Total
	Capture Total	Sample Total										
BS1	117	45	0	0	0	0	0	0	0	0	117	45
BS2	357	49	0	0	0	0	0	0	0	0	357	49
BS3	406	21	5	5	0	0	0	0	0	0	411	26
BS4	728	48	0	0	0	0	0	0	0	0	728	48
BS5	117	27	3	3	0	0	0	0	0	0	120	30
BS6	442	45	0	0	0	0	0	0	0	0	442	45
FC1	260	45	0	0	0	0	0	0	0	0	260	45
FC2	114	24	0	0	0	0	0	0	0	0	114	24
FC3	202	39	0	0	0	0	0	0	0	0	202	39
FC4	276	16	7	7	0	0	0	0	0	0	283	23
HI1	65	30	0	0	0	0	0	0	0	0	65	30
HI2	163	30	18	8	0	0	0	0	0	0	181	38
HI3	2	2	3	3	0	0	0	0	0	0	5	5
MC1	2210	25	2	2	0	0	0	0	0	0	2212	27
MC3	806	36	0	0	0	0	0	0	0	0	806	36
MC4	25	20	0	0	0	0	0	0	0	0	25	20
SD1	83	37	0	0	0	0	0	0	0	0	83	37
SI1	695	35	3	3	0	0	0	0	0	0	698	38
SI2	75	28	0	0	2	0	0	0	0	0	77	28
SI3	18	18	3	3	33	0	0	0	0	0	54	21
Total	7161	620	44	34	35	0	0	0	0	0	7240	654

3.3 Fish Sample Size Statistics

Summary statistics for weight and fork length were calculated for the sample population of juvenile salmonids. Length (Table 6) and weight (Table 7) data were summarized by sampling event for each species.

3.3.1 Chum Salmon

Individual weight of the 620 chum smolts collected during the four sample events ranged from 0.2 g to 10.3 g and averaged 1.3 g (SD = 1.2). Fork length of the chum smolts ranged from 29 mm to 100 mm and averaged 47 mm (SD = 11).

3.3.1 Coho Salmon

Individual weight of the 34 coho smolts collected during the four sample events ranged from 4.8 g to 27.4 g and averaged 10.6 g (SD = 4.4). Fork length of the coho smolts ranged from 72 mm to 125 mm and averaged 94 mm (SD = 12).

Table 6: Average lengths of chum and coho salmon collected in Clayoquot Sound, BC in 2025, summarized by sampling event.

Species	Average Length (mm)			
	April 10/11	April 29/30	May 8/9	May 29/30
chum	38	48	48	67
coho	87	97	94	94

Table 7: Average weights of chum and coho salmon collected in Clayoquot Sound, BC in 2025, summarized by sampling event.

Species	Average Weight (g)			
	April 10/11	April 29/30	May 8/9	May 29/30
chum	0.6	1.4	1.3	3.7
coho	8.6	11.7	9.8	11.2

3.4 Sea Lice Infestation Rates

The results of laboratory analysis for the presence of sea lice on the fish sample population collected in Clayoquot Sound, BC in 2025 are presented in Table 8. A complete dataset is included in Appendix III. A total of 654 samples were collected, with salmon captured at all the sampled sites in Clayoquot Sound, BC were inspected for sea lice infestation.

A total of 281 individuals in the sample population were found to be infested with 613 sea lice (Table 8). A total of 269 chum salmon, and 12 coho salmon were found to be infested with sea lice (Table 8).

The sea lice prevalence in the sample population collected in Clayoquot Sound in 2025 was 43.0 % and the abundance was 0.94 (Table 8). Sea lice counts of both species observed (*L. salmonis* and *C. clemensi*) were added together for the prevalence and abundance calculations for the entire sample population.

The intensity of sea lice infestation ranged from one louse found on 127 individuals to a maximum of 11 lice found on one individual. The average intensity of lice on infected individuals was greater on chum salmon. The average intensity was 2.2 for chum salmon and 1.8 for coho salmon (Table 8).

Table 8: Results of analysis for sea lice infestation on fish collected by beach seine in Clayoquot Sound, BC in 2025.

Species	Sample size (n)	Total number of lice observed	Total number of fish infested	Prevalence (%)	Abundance	Average Intensity
chum	620	591	269	43.4	0.95	2.2
coho	34	22	12	35.3	0.65	1.8
Total	654	613	281	43.0	0.94	2.2

3.4.1 Infestation on Chum Salmon

The results of the laboratory analysis for sea lice infestation for chum salmon are presented by site in Table 9. A total of 269 chum salmon were found to be infested with 591 sea lice (Table 9). The largest number of chum salmon infested with sea lice (39 chum) and the largest number of total sea lice (99 lice) found on samples, were at BS1 and BS4, respectively (Table 9). Sea lice were found on fish at every site except for HI3 and SI3. At least one chum was collected from each of the 20 sites (Table 9).

A total of 269 chum salmon were found to be infested with at least one sea louse. The prevalence of sea lice on the chum salmon sample population (n= 620) collected in Clayoquot Sound, BC in 2025 was 43.4 %. Sea lice prevalence calculated by site for chum salmon and is presented in Table 9. The highest sea lice prevalence (86.7 %) was at BS1.

A total of 591 sea lice were identified during laboratory analysis of retained chum salmon. The abundance of sea lice on the chum salmon sample population (n= 620) collected in Clayoquot Sound, BC in 2025 was 0.95. The 591 sea lice identified were observed on 269 individual chum salmon resulting in an average intensity of 2.2 for the chum sample population. Sea lice abundance and intensity were calculated by site and are presented in Table 9. The highest sea lice abundance (2.18) was at BS1, and the highest intensity (3.2) was at BS4.

Table 9: Total number, prevalence, abundance, and intensity of sea lice infestation on chum salmon collected in Clayoquot Sound, BC in 2025 summarized by sampling site.

Site	# of Chum Analyzed	# of Infested Chum	Average Weight of Infested Chum (g)	# of Lice	Prevalence (%)	Abundance	Average Intensity
BS1	45	39	1.3	98	86.7	2.18	2.5
BS2	49	34	1.6	81	69.4	1.65	2.4
BS3	21	2	0.6	2	9.5	0.10	1.0
BS4	48	31	1.8	99	64.6	2.06	3.2
BS5	27	4	1.0	4	14.8	0.15	1.0
BS6	45	27	0.8	60	60.0	1.33	2.2
FC1	45	20	1.5	50	44.4	1.11	2.5
FC2	24	9	1.1	14	37.5	0.58	1.6
FC3	39	18	0.9	29	46.2	0.74	1.6
FC4	16	2	0.5	2	12.5	0.13	1.0
HI1	30	4	3.3	5	13.3	0.17	1.3
HI2	30	4	1.3	5	13.3	0.17	1.3
HI3	2	0	-	0	0.0	0.00	0.0
MC1	25	13	2.3	22	52.0	0.88	1.7
MC3	36	29	1.1	68	80.6	1.89	2.3
MC4	20	5	0.9	6	25.0	0.30	1.2
SD1	37	2	0.8	2	5.4	0.05	1.0
SI1	35	16	1.4	22	45.7	0.63	1.4
SI2	28	10	1.1	22	35.7	0.79	2.2
SI3	18	0	-	0	0.0	0.00	0.0
TOTAL	620	269	1.3	591	43.4	0.95	2.2

3.4.2 Infestation on Coho Salmon

The results of the laboratory analysis for sea lice infestation for coho salmon are presented by site in Table 10. A total of 12 coho salmon were found to be infested with 22 sea lice (Table 10). The largest number of coho salmon infested with sea lice (five coho) and the largest number of total sea lice (11 lice) found on samples, were at FC4 and HI3, respectively (Table 10). Coho were collected from eight of the 20 sites (Table 10). Sea lice were found on fish at every site they were collected from except for SI1 and MC1.

A total of 12 coho salmon were found to be infested with at least one sea louse. The prevalence of sea lice on the coho salmon sample population ($n= 34$) collected in Clayoquot Sound, BC in 2025 was 35.3 %. Sea lice prevalence calculated by site for coho salmon and is presented in Table 10. The highest sea lice prevalence (71.4 %) was at FC4.

A total of 22 sea lice were identified during laboratory analysis of retained coho salmon. The abundance of sea lice on the coho salmon sample population ($n= 34$) collected in Clayoquot Sound, BC in 2025 was 0.65. The 22 sea lice identified were observed on 12 individual coho salmon resulting in an average intensity of 1.8 for the coho sample population. Sea lice abundance and intensity were calculated by site and are presented in Table 10. The highest sea lice abundance (3.67) and the highest intensity (5.5) were both at HI3.

Table 10: Total number, prevalence, abundance, and intensity of sea lice infestation on coho salmon collected in Clayoquot Sound, BC in 2025 summarized by sampling site.

Site	# of Coho Analyzed	# of Infested Coho	Average Weight of Infested Coho (g)	# of Lice	Prevalence (%)	Abundance	Average Intensity
BS1	0	-	-	-	0.0	0.00	0.0
BS2	0	-	-	-	0.0	0.00	0.0
BS3	5	2	8.5	3	40.0	0.60	1.5
BS4	0	-	-	-	0.0	0.00	0.0
BS5	3	1	8.4	1	33.3	0.33	1.0
BS6	0	-	-	-	0.0	0.00	0.0
FC1	0	-	-	-	0.0	0.00	0.0
FC2	0	-	-	-	0.0	0.00	0.0
FC3	0	-	-	-	0.0	0.00	0.0
FC4	7	5	13.3	5	71.4	0.71	1.0
HI1	0	-	-	-	0.0	0.00	0.0
HI2	8	1	11.5	1	12.5	0.13	1.0
HI3	3	2	8.0	11	66.7	3.67	5.5
MC1	2	0	-	0	0.0	0.00	0.0
MC3	0	-	-	-	0.0	0.00	0.0
MC4	0	-	-	-	0.0	0.00	0.0
SD1	0	-	-	-	0.0	0.00	0.0
SI1	3	0	-	0	0.0	0.00	0.0
SI2	0	-	-	-	0.0	0.00	0.0
SI3	3	1	6.1	1	33.3	0.33	1.0
TOTAL	34	12	9.3	22	35.3	0.65	1.8

3.5 Infestation by Sea Lice Species

3.5.1 Infestation by Life Stage on Chum Salmon

An analysis of the species of sea lice identified on the 269 infested chum salmon is presented in Table 11. A total of 502 *Lepeophtheirus salmonis* sea lice of various life stages were identified on 237 juvenile chum salmon and 89 *Caligus clemensi* sea lice of various life stages were found on 69 chum salmon. Of the infested chum, 37 were found to be infested with at least one *L. salmonis* and *C. clemensi* sea louse (Appendix III). The sea lice species identified on chum salmon are also presented by site in Table 12.

Table 11: The number of *Lepeophtheirus salmonis* and *Caligus clemensi* in each life stage identified on the chum salmon sample population from Clayoquot Sound, BC in 2025. LEP = *Lepeophtheirus salmonis* CAL = *Caligus clemensi*

Life Stage ¹	April 10/11	April 29/30	May 8/9	May 29/30
LEP Co	34	44	72	9
LEP C1	24	61	58	23
LEP C2	5	31	48	41
LEP NM No ID	0	0	0	0
LEP PAM	0	12	9	17
LEP PAF	0	3	5	0
LEP AM	0	3	1	2
LEP AF	0	0	0	0
TOTAL LEP	63	154	193	92
CAL Co	3	5	6	1
CAL C1	12	15	1	0
CAL C2	1	5	1	0
CAL C3	0	8	0	0
CAL C4	0	16	1	0
CAL NM No ID	0	0	0	0
CAL PAM	0	5	1	1
CAL PAF	0	2	1	3
CAL AM	0	0	0	0
CAL AF	0	0	0	1
TOTAL CAL	16	56	11	6

¹ Lice life stage codes: Co = copepodid, C1-4 = chalimus 1-4, PAM = pre-adult male, PAF = pre-adult female, AM = adult male, AF = adult female.

Table 12: The number of sea lice found on chum salmon collected in Clayoquot Sound, BC in 2025 summarized by sampling site. LEP = *Lepeophtheirus salmonis* CAL= *Caligus clemensi*

Site	Sample Period															TOTAL			
	April 10/11				April 29/30				May 8/9				May 29/30						
	# of Chum Analyzed	# of Infested Chum	# of LEP	# of CAL	# of Chum Analyzed	# of Infested Chum	# of LEP	# of CAL	# of Chum Analyzed	# of Infested Chum	# of LEP	# of CAL	# of Chum Analyzed	# of Infested Chum	# of LEP	# of CAL	# of Chum Analyzed	# of Infested Chum	# of Lice
BS1	15	11	11	5	15	13	20	17	15	15	44	1	0	0	0	0	45	39	98
BS2	15	9	14	0	15	10	16	4	15	12	33	3	4	3	10	1	49	34	81
BS3	15	1	1	0	1	0	0	0	5	1	1	0	0	0	0	0	21	2	2
BS4	15	4	4	0	15	11	25	4	3	2	3	1	15	14	58	4	48	31	99
BS5	9	0	0	0	15	3	2	1	1	0	0	0	2	1	1	0	27	4	4
BS6	15	1	1	0	15	12	19	5	15	14	34	1	0	0	0	0	45	27	60
FC1	15	3	2	1	15	3	6	0	15	14	39	2	0	0	0	0	45	20	50
FC2	8	0	0	0	15	9	14	0	1	0	0	0	0	0	0	0	24	9	14
FC3	15	3	3	0	9	5	5	1	15	10	18	2	0	0	0	0	39	18	29
FC4	15	2	2	0	1	0	0	0	0	0	0	0	0	0	0	0	16	2	2
HI1	0	0	0	0	15	0	0	0	0	0	0	15	4	4	1	30	4	5	
HI2	0	0	0	0	15	3	3	1	15	1	1	0	0	0	0	0	30	4	5
HI3	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2	0	0
MC1	0	0	0	0	15	9	12	2	3	1	3	0	7	3	5	0	25	13	22
MC3	15	12	17	7	15	13	27	11	6	4	6	0	0	0	0	0	36	29	68
MC4	4	2	2	1	15	3	3	0	0	0	0	0	1	0	0	0	20	5	6
SD1	7	0	0	0	15	0	0	0	15	2	2	0	0	0	0	0	37	2	2
SI1	13	4	3	2	15	9	2	10	7	3	5	0	0	0	0	0	35	16	22
SI2	15	3	3	0	1	0	0	0	6	4	4	1	6	3	14	0	28	10	22
SI3	4	0	0	0	0	0	0	0	11	0	0	0	3	0	0	0	18	0	0
Total	195	55	63	16	222	103	154	56	150	83	193	11	53	28	92	6	620	269	591

3.5.1 Infestation by Life Stage on Coho Salmon

An analysis of the species of sea lice identified on the 12 infested coho salmon is presented in Table 13. A total of 20 *Lepeophtheirus salmonis* sea lice of various life stages were identified on 12 juvenile coho salmon and two *Caligus clemensi* sea lice of the copepodid life stage were found on one coho salmon. Of the infested coho, one was found to be infested with at least one *L. salmonis* and *C. clemensi* sea louse (Appendix III). The sea lice species identified on coho salmon are also presented by site in Table 14.

Table 13: The number of *Lepeophtheirus salmonis* and *Caligus clemensi* in each life stage identified on the coho salmon sample population from Clayoquot Sound, BC in 2025. LEP = *Lepeophtheirus salmonis* CAL = *Caligus clemensi*

Life Stage ¹	April 10/11	April 29/30	May 8/9	May 29/30
LEP Co	0	2	8	1
LEP C1	0	3	2	0
LEP C2	0	0	1	1
LEP NM No ID	0	0	0	0
LEP PAM	0	0	0	1
LEP PAF	0	0	1	0
LEP AM	0	0	0	0
LEP AF	0	0	0	0
TOTAL LEP	0	5	12	3
CAL Co	0	0	2	0
CAL C1	0	0	0	0
CAL C2	0	0	0	0
CAL C3	0	0	0	0
CAL C4	0	0	0	0
CAL NM No ID	0	0	0	0
CAL PAM	0	0	0	0
CAL PAF	0	0	0	0
CAL AM	0	0	0	0
CAL AF	0	0	0	0
TOTAL CAL	0	0	2	0

¹ Lice life stage codes: Co = copepodid, C1-4 = chalimus 1-4, PAM = pre-adult male, PAF = pre-adult female, AM = adult male, AF = adult female.

Table 14: The number of sea lice found on coho salmon collected in Clayoquot Sound, BC in 2025 summarized by sampling site. LEP = *Lepeophtheirus salmonis* CAL= *Caligus clemensi*

Site	Sample Period																TOTAL		
	April 10/11				April 29/30				May 8/9				May 29/30						
	# of Coho Analyzed	# of Infested Coho	# of LEP	# of CAL	# of Coho Analyzed	# of Infested Coho	# of LEP	# of CAL	# of Coho Analyzed	# of Infested Coho	# of LEP	# of CAL	# of Coho Analyzed	# of Infested Coho	# of LEP	# of CAL	# of Coho Analyzed	# of Infested Coho	# of Lice
BS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BS2	0	0	0	0	0	0	0	0	2	3	0	0	0	0	0	0	0	2	3
BS3	0	0	0	0	0	0	2	0	0	0	3	0	0	0	0	0	5	0	0
BS4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BS5	0	0	0	0	0	0	0	0	0	0	3	1	1	0	3	1	1	1	1
BS6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FC1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FC2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FC3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FC4	0	0	0	0	5	4	4	0	0	0	0	2	1	1	0	7	5	5	5
HI1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HI2	0	0	0	0	2	0	0	0	6	1	1	0	0	0	0	0	8	1	1
HI3	0	0	0	0	0	0	0	2	1	8	2	1	1	1	0	3	2	11	
MC1	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0
MC3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MC4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SD1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SI1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0
SI2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SI3	0	0	0	0	1	1	1	0	2	0	0	0	0	0	0	3	1	1	1
Total	3	0	0	0	8	5	5	0	12	4	12	2	11	3	3	0	34	12	22

4.0 References

Hamre L.A., C Eichner, C.M.A. Caipang, S.T. Dalvin, J.E. Bron, F. Nilsen, G. Boxshall and R. Skern-Mautzen. 2013. The Salmon Louse *Lepeophtheirus salmonis* (Copepoda: Caligidae) Life Cycle Has Only Two Chalimus Stages. PLoS ONE 8(9): e73539.

Healey M.C. 1991. Life history of chinook salmon (*Oncorhynchus tshawytscha*). In: Pacific Salmon Life Histories. C Grott, L Margolis (eds). UBC Press, Vancouver. Pp 313-393.

Jones S. and S. Johnson. 2015. Sea lice monitoring and non-chemical measures A: Biology of sea lice, *Lepeophtheirus salmonis* and *Caligus spp.*, in western and eastern Canada. DFO Canadian Science Advisory Secretariat. Research Document 2014/019 Pacific Region. Pacific Biological Station, Fisheries and Oceans Canada.

Jones S. and A. Nemec. 2004. Pink Salmon Action Plan Research. Part II: Sea Lice on Juvenile Salmon and on Three-spine Sticklebacks in 2003. PSARC Working Paper H2004-01.

Johnson S.C. and L.J. Albright. 1991a. The developmental stages of *Lepeophtheirus salmonis* (Kroyer, 1837) (Copepoda: Caligidae). Canadian Journal of Zoology 69: 929-950.

Johnson S.C. and L.J. Albright. 1991b. Development, growth and survival of *Lepeophtheirus salmonis* (Copepoda: Caligidae) under laboratory conditions. Journal of the Marine Biological Association of the UK 71: 425-436.

Kabata Z. 1972. Developmental stages of *Caligus clemensi* (Copepoda: Caligidae) from fishes of British Columbia. Journal of the Fisheries Research Board of Canada 29: 1571-1593.

Kabata Z. 1974. The species of *Lepeophtheirus* (Copepoda: Caligidae), from fishes of British Columbia. Journal of the Fisheries Research Board of Canada 30: 729-759.

Margolis L., J.R. Arthur. 1979. Synopsis of the parasites of fishes of Canada. Bulletin of the Fisheries Research Board of Canada, Number 199. Ottawa. 269 pages.

McDonald T.E., and L. Margolis. 1995. Synopsis of the parasites of fishes of Canada (1978-1993). Canadian Special Publication of Fisheries and Aquatic Sciences No. 122. National Research Council of Canada, Ottawa. 265 pages.

Pacific Aquaculture Regulations. Finfish Aquaculture Licence conditions under the Pacific Aquaculture Regulations. Section 7. Sea Lice Monitoring

Parker R.R. and L. Margolis. 1964. A new species of parasitic copepod, *Caligus clemensi* sp. nov. (Clogoida: Caligidae), from pelagic fishes in the coastal waters of British Columbia. Journal of Fisheries Research Board of Canada 21: 873-889.

Pollard W.R., G.F. Hartman, C. Groot, and P. Edgell. 1997. Field Identification of Coastal Juvenile Salmonids. Published by Harbour Publishing for the Federal Department of Fisheries and Oceans and MacMillan Bloedel Ltd. Madeira Park, BC Canada.

Saksida, S., Constantine J., Karreman G.A. and Donald A. 2007a. Evaluation of sea lice abundance levels on farmed Atlantic salmon (*Salmo salar* L) located in the Broughton Archipelago of British Columbia from 2003 to 2005. *Aquacult. Res.* 38: 219-231.

Saksida, S., Karreman G.A., Constantine J., and Donald A. 2007b. Differences in *Lepeophtheirus salmonis* abundance levels on Atlantic salmon farms in the Broughton Archipelago, British Columbia, Canada. *J. Fish Dis.* 30:357-366.

Salo E.O. 1991. Life history of chum salmon (*Oncorhynchus keta*). In: *Pacific Salmon Life Histories*. C Grott, L Margolis (eds). UBC Press, Vancouver. Pp 233-309.

Sandercock F.K. 1991. Life history of coho salmon (*Oncorhynchus kisutch*). In: *Pacific Salmon Life Histories*. C. Grott, L. Margolis (eds). UBC Press, Vancouver. Pp 397-445.

Tully O. 1992. Predicting infestation parameters and impacts of caligid copepods in wild and captured fish populations. *Invert. Reprod. Develop.* 22: 91-102.

Appendix I – Field Data

Date	Time	Site Name	Salinity (ppt)		Temperature (deg C.)		DO (mg/ L)		Temperature (deg C.)		DO (mg/ L)	
			0.2m	0.2m	0.2m	1.0m	1.0m	1.0m	1.0m	1.0m	1.0m	
2025-04-10	08:18	MC4	15.5		9.6		10.7		16.8		9.7	10.8
2025-04-10	08:50	MC3	18.3		10.0		11.0		19.2		10.0	11.1
2025-04-10	09:53	SD1	15.3		9.5		10.1		15.5		9.6	10.2
2025-04-10	10:24	SI1	19.9		9.3		11.3		20.8		9.3	11.0
2025-04-10	10:47	SI2	11.6		8.9		11.2		12.5		8.9	11.0
2025-04-10	11:26	SI3	4.6		8.4		11.1		11.8		8.4	11.6
2025-04-11	07:54	BS1	22.1		9.3		9.4		22.1		9.3	9.6
2025-04-11	08:29	BS3	9.2		7.2		11.1		20.4		8.6	9.8
2025-04-11	09:07	BS4	7.6		7.5		11.6		13.8		7.7	10.7
2025-04-11	09:50	BS5	5.0		6.5		11.9		7.6		6.6	11.7
2025-04-11	10:25	FC4	17.4		8.6		10.0		17.9		8.6	10.0
2025-04-11	11:00	FC2	19.6		9.0		9.9		19.7		9.0	9.6
2025-04-11	11:18	FC1	9.2		9.2		11.2		17.7		9.2	10.8
2025-04-11	11:45	FC3	21.6		9.5		9.8		22.0		9.6	9.6
2025-04-11	12:15	BS6	9.0		9.4		11.7		19.9		8.8	10.6
2025-04-11	12:48	BS2	21.4		9.7		11.1		21.5		9.7	11.0
2025-04-29	08:14	MC4	23.8		11.0		9.5		23.9		10.8	9.8
2025-04-29	08:46	MC3	22.0		11.0		11.4		23.3		11.1	10.3
2025-04-29	09:39	SD1	23.2		11.5		9.8		23.7		12.1	10.2
2025-04-29	10:10	SI1	24.9		10.9		10.4		24.9		10.8	11.3
2025-04-29	11:07	SI2	24.5		11.2		10.7		25.0		11.0	10.7
2025-04-29	11:38	SI3	22.8		11.3		11.3		23.8		11.2	11.0
2025-04-29	12:08	MC1	23.7		12.2		11.4		23.8		11.6	11.3
2025-04-29	13:00	HI1	10.6		13.1		10.3		17.2		12.8	10.2
2025-04-29	13:31	HI2	21.3		13.1		9.8		21.4		13.1	9.9
2025-04-29	14:13	HI3	23.4		11.7		10.7		23.6		11.4	11.0
2025-04-29	14:45	BS1	23.8		11.2		9.9		24.0		11.1	9.9
2025-04-29	15:14	BS2	24.0		11.0		9.6		24.0		11.0	9.6
2025-04-30	07:54	BS3	22.2		10.6		9.2		23.2		10.7	9.2
2025-04-30	08:22	BS4	19.3		11.6		11.1		20.4		11.1	10.2
2025-04-30	08:59	BS5	5.4		9.6		11.2		19.9		10.7	10.5
2025-04-30	09:37	BS6	23.8		10.5		9.0		23.8		10.5	8.9
2025-04-30	10:13	FC3	23.0		10.6		9.3		23.0		10.6	9.2
2025-04-30	10:33	FC4	18.3		10.6		9.7		22.2		10.8	9.2
2025-04-30	10:58	FC1	22.5		10.7		9.3		22.6		10.7	9.3
2025-04-30	11:24	FC2	22.6		11.0		9.5		22.6		10.9	9.5
2025-05-08	08:19	MC4	27.9		12.8		9.4		27.9		12.7	9.3

Date	Time	Site Name	Salinity (ppt)	Temperature (deg C.)	DO (mg/ L)	Salinity (ppt)	Temperature (deg C.)	DO (mg/ L)
			0.2m	0.2m	0.2m	1.0m	1.0m	1.0m
2025-05-08	08:39	MC3	27.6	12.7	8.9	29.0	11.8	9.5
2025-05-08	09:25	SD1	28.4	12.6	9.1	29.4	12.1	9.6
2025-05-08	10:11	SI1	29.0	11.6	9.9	29.3	11.5	9.9
2025-05-08	10:33	SI2	27.8	11.6	10.2	28.0	11.4	10.3
2025-05-08	11:00	SI3	23.8	12.6	9.7	27.7	12.6	10.1
2025-05-08	11:35	MC1	27.4	12.9	9.1	27.8	12.8	9.3
2025-05-08	12:10	HI1	15.4	12.6	9.3	25.3	12.8	9.3
2025-05-08	12:38	HI2	21.0	13.4	8.9	27.8	12.4	10.1
2025-05-08	13:20	HI3	28.5	13.1	9.9	29.3	11.6	11.5
2025-05-08	13:53	BS1	28.2	11.8	10.2	28.3	11.7	10.4
2025-05-08	14:20	BS2	27.9	11.8	10.2	28.1	11.6	10.3
2025-05-09	07:47	BS3	27.2	11.5	10.0	27.6	11.2	9.6
2025-05-09	08:15	BS4	24.6	11.1	10.4	24.7	11.2	10.2
2025-05-09	08:44	BS5	20.8	10.4	10.2	-	-	-
2025-05-09	09:13	BS6	25.3	11.3	9.0	25.4	11.3	10.2
2025-05-09	09:45	FC3	28.1	11.0	8.9	-	-	-
2025-05-09	10:13	FC4	24.8	11.8	9.7	26.0	11.8	10.1
2025-05-09	10:36	FC2	26.0	11.6	9.3	-	-	-
2025-05-09	10:53	FC1	26.2	11.6	9.5	26.3	11.3	9.7
2025-05-29	8:30	MC4	21.5	11.8	8.3	29.1	11.8	8.1
2025-05-29	8:55	MC3	25.2	12.7	8.4	27.3	12.6	8.3
2025-05-29	9:37	SD1	22.9	14.1	8.6	27.6	13.6	9.1
2025-05-29	10:05	SI1	28.4	12.8	8.8	29.4	12.1	8.6
2025-05-29	10:23	SI2	29.1	12.4	8.4	29.5	11.7	8.0
2025-05-29	10:50	SI3	11.7	13.7	8.9	25.3	12.6	8.6
2025-05-29	11:42	HI1	18.4	14.9	9.0	24.6	14.5	8.9
2025-05-29	12:14	HI2	24.8	14.8	8.5	26.9	13.7	8.5
2025-05-29	12:49	MC1	24.2	15.5	8.3	27.2	14.0	8.9
2025-05-29	13:19	HI3	27.5	13.7	8.9	27.7	13.4	8.5
2025-05-29	13:54	BS1	28.7	13.0	9.2	28.9	12.8	8.9
2025-05-29	14:17	BS2	29.5	12.5	8.1	29.8	12.3	8.2
2025-05-30	10:01	BS3	16.8	12.2	12.3	27.6	12.4	8.2
2025-05-30	10:32	BS4	16.2	13.4	8.4	-	-	-
2025-05-30	11:10	BS5	8.0	11.8	9.4	-	-	-
2025-05-30	11:40	BS6	28.4	12.1	8.3	-	-	-
2025-05-30	12:04	FC3	28.5	11.9	7.8	-	-	-
2025-05-30	12:26	FC4	24.2	12.8	8.7	-	-	-
2025-05-30	12:48	FC1	27.8	12.3	8.4	-	-	-
2025-05-30	13:06	FC2	27.6	12.8	8.6	-	-	-

Appendix II – Capture and Collection Sample Totals

Date	Time	Site Name	Tide Stage	Pink Captured	Pink Retained	Chum Captured	Chum Retained	Coho Captured	Coho Retained	Chinook Captured	Chinook Retained	Sockeye Captured	Sockeye Retained	Salmonid Mortalities	Weather Comments	Comments
2025-04-10	08:18	MC4	Low	0	0	4	4	0	0	0	0	0	0	0	High wind, rough, cloud	1 sandlance, lots of snags, slow first set
2025-04-10	08:50	MC3	Mid	0	0	350	15	0	0	0	0	0	0	0	High wind, rain	Pile perch, shiner perch, pipefish
2025-04-10	09:53	SD1	High	0	0	7	7	0	0	0	0	0	0	0	High wind, rain, chop	Swell, very windy
2025-04-10	10:24	SI1	High	0	0	13	13	3	3	0	0	0	0	0	High wind, rain, chop	-
2025-04-10	10:47	SI2	High	0	0	62	15	0	0	0	0	0	0	0	Heavy rain, heavy wind	-
2025-04-10	11:26	SI3	High	0	0	4	4	0	0	0	0	0	0	0	Heavy wind	-
2025-04-11	07:54	BS1	Low	0	0	59	15	0	0	0	0	0	0	0	Calm, sun	5 stickleback, 50 flatfish, 1 tubesnout, 2 juvenile lingcod
2025-04-11	08:29	BS3	Low	0	0	400	15	0	0	0	0	0	0	0	Calm, sun	2 green crab, 1 kelp crab, shiner perch
2025-04-11	09:07	BS4	Mid	0	0	173	15	0	0	0	0	0	0	6	Calm, sun	Rock in net rolling around creating mortality, lots of snags
2025-04-11	09:50	BS5	Mid	0	0	9	9	0	0	0	0	0	0	0	Calm, sun	Ctenophores
2025-04-11	10:25	FC4	Mid	0	0	275	15	0	0	0	0	0	0	1	Calm, sun	Big snag
2025-04-11	11:00	FC2	High	0	0	8	8	0	0	0	0	0	0	0	Calm, sun	-
2025-04-11	11:18	FC1	High	0	0	83	15	0	0	0	0	0	0	0	Calm, sun	1 unidentified fish
2025-04-11	11:45	FC3	High	0	0	163	15	0	0	0	0	0	0	0	Calm, sun	Good set
2025-04-11	12:15	BS6	High	0	0	340	15	0	0	0	0	0	0	0	Calm, cloud	-
2025-04-11	12:48	BS2	High	0	0	130	15	0	0	0	0	0	0	0	Calm, cloud	Good set
2025-04-29	08:14	MC4	Low	0	0	20	15	0	0	0	0	0	0	2	Calm, sun	20 striped perch, 5 kelp perch, 15 shiner perch, pipefish, tubesnout, gunnels, flattish
2025-04-29	08:46	MC3	Low	0	0	450	15	0	0	0	0	0	0	0	Calm, cloud	Shiner perch, ctenophores, moonsnails
2025-04-29	09:39	SD1	Low	0	0	18	15	0	0	0	0	0	0	0	Calm, cloud	40 kelp perch, 15 striped perch, pipefish, ctenophores
2025-04-29	10:10	SI1	Low	0	0	675	15	0	0	0	0	0	0	5	Calm, cloud	Perch, boat motor hydraulic issue
2025-04-29	11:07	SI2	Low	0	0	1	1	0	0	2	0	0	0	0	Calm, cloud	1 kelp perch, 1 sculpin, very snaggy set
2025-04-29	11:38	SI3	Low	0	0	0	0	1	1	0	0	0	0	0	Calm, clear	3 green crabs, pipefish, sculpin
2025-04-29	12:08	MC1	Mid	0	0	2200	15	0	0	0	0	0	0	3	Calm, clear	-
2025-04-29	13:00	HI1	Mid	0	0	45	15	0	0	0	0	0	0	0	Calm, clear	Pipefish
2025-04-29	13:31	HI2	Mid	0	0	49	15	2	2	0	0	0	0	0	Calm, clear	-
2025-04-29	14:13	HI3	Mid	0	0	0	0	0	0	0	0	0	0	0	Calm, clear	-
2025-04-29	14:45	BS1	High	0	0	38	15	0	0	0	0	0	0	0	Ctenophores, pipefish	

Date	Time	Site Name	Tide Stage	Pink Captured	Pink Retained	Chum Captured	Chum Retained	Coho Captured	Coho Retained	Chinook Captured	Chinook Retained	Sockeye Captured	Sockeye Retained	Salmonid Mortalities	Weather Comments	Comments
2025-04-29	15:14	BS2	High	0	0	60	15	0	0	0	0	0	0	0	Calm, clear	Sculpins, ctenophores, hermit crabs. Good set.
2025-04-30	07:54	BS3	Low	0	0	1	1	0	0	0	0	0	0	0	Calm, overcast	20 green crabs (crushed), flatfish
2025-04-30	08:22	BS4	Low	0	0	500	15	0	0	0	0	0	0	0	Calm, overcast	Gunnel, ctenophores
2025-04-30	08:59	BS5	Low	0	0	105	15	0	0	0	0	0	0	0	Calm, overcast	Ctenophores, sculpin
2025-04-30	09:37	BS6	Low	0	0	27	15	0	0	0	0	0	0	2	Calm, overcast	Gunnel, ctenophores
2025-04-30	10:13	FC3	Low	0	0	9	9	0	0	0	0	0	0	1	Calm, overcast	3 kelp crabs
2025-04-30	10:33	FC4	Low	0	0	1	1	5	5	0	0	0	0	0	Calm, overcast	Unknown fish
2025-04-30	10:58	FC1	Low	0	0	82	15	0	0	0	0	0	0	0	Calm, overcast	Jellyfish, sculpin, 2 trout
2025-04-30	11:24	FC2	Low	0	0	105	15	0	0	0	0	0	0	0	Calm, sun/cloud	Pipefish, tubesnout
2025-05-08	08:19	MC4	Mid	0	0	0	0	0	0	0	0	0	0	0	Overcast, calm	3 pipefish, flatfish
2025-05-08	08:39	MC3	Mid	0	0	6	6	0	0	0	0	0	0	0	Overcast, calm	Pipefish, 25 shiner perch, rockfish
2025-05-08	09:25	SD1	Mid	0	0	58	15	0	0	0	0	0	0	0	Overcast, calm	Shiner perch, ling
2025-05-08	10:11	SI1	Mid	0	0	7	7	0	0	0	0	0	0	0	Cloud/sun, calm	Sculpin
2025-05-08	10:33	SI2	High	0	0	6	6	0	0	0	0	0	0	0	Cloud/sun, calm	Juvenile ling, sculpin
2025-05-08	11:00	SI3	High	0	0	11	11	2	2	19	0	0	0	0	Cloud/sun, calm	Geen and juvenile ling, sculpins
2025-05-08	11:35	MC1	High	0	0	3	3	0	0	0	0	0	0	0	Overcast, calm	Big snag
2025-05-08	12:10	HI1	High	0	0	0	0	0	0	0	0	0	0	0	Cloud/sun, calm	2 tubesnout, 2 flatfish
2025-05-08	12:38	HI2	High	0	0	114	15	6	6	0	0	0	0	1	Cloud/sun, calm	10000 sandlance, sculpin
2025-05-08	13:20	HI3	High	0	0	2	2	2	2	0	0	0	0	0	Cloud/sun, calm	2 gunnel, jellyfish
2025-05-08	13:53	BS1	High	0	0	20	15	0	0	0	0	0	0	0	Cloud/sun, calm	Flatfish, 1 green crab (crushed), sculpins, swelly set
2025-05-08	14:20	BS2	High	0	0	163	15	0	0	0	0	0	0	1	Cloud/sun, calm	Ling
2025-05-09	07:47	BS3	Low	0	0	5	5	2	2	0	0	0	0	0	Overcast, calm	20 green crab (crushed), 1 trout
2025-05-09	08:15	BS4	Low	0	0	3	3	0	0	0	0	0	0	0	Overcast, calm	2 kelp crab, pipefish, sculpin
2025-05-09	08:44	BS5	Mid	0	0	1	1	0	0	0	0	0	0	0	Overcast, calm	Ctenophores
2025-05-09	09:13	BS6	Mid	0	0	75	15	0	0	0	0	0	0	0	Overcast, calm	Gunnel, rockfish, 5 kelp perch

Date	Time	Site Name	Tide Stage	Pink Captured	Pink Retained	Chum Captured	Chum Retained	Coho Captured	Coho Retained	Chinook Captured	Chinook Retained	Sockeye Captured	Sockeye Retained	Salmonid Mortalities	Weather Comments	Comments
2025-05-09	09:45	FC3	Mid	0	0	30	15	0	0	0	0	0	0	0	Overcast, calm	Kelp crabs, graceful crab, pipefish, sculpin, ctenophores
2025-05-09	10:13	FC4	Mid	0	0	0	0	0	0	0	0	0	0	0	Overcast, calm	1 unidentified fish, tubesnout, very big snag
2025-05-09	10:36	FC2	Mid	0	0	1	1	0	0	0	0	0	0	0	Overcast, calm	Gunnel, flatfish
2025-05-09	10:53	FC1	Mid	0	0	95	15	0	0	0	0	0	0	0	Overcast, calm	Gunnel, kelp crab, good set
2025-05-29	8:30	MC4	Low	0	0	1	1	0	0	0	0	0	0	0	Clear	Flatfish, pipefish, greenling, kelp perch
2025-05-29	8:55	MC3	Low	0	0	0	0	0	0	0	0	0	0	0	Clear	Kelp perch, flatfish, sculpin, juvenile ling
2025-05-29	9:37	SD1	Low	0	0	0	0	0	0	0	0	0	0	0	Clear	4 juvenile rockfish, kelp perch, striped perch
2025-05-29	10:05	SI1	Low	0	0	0	0	0	0	0	0	0	0	0	Clear	Kelp crab, 10 juvenile ling, jellyfish
2025-05-29	10:23	SI2	Low	0	0	6	6	0	0	0	0	0	0	0	Clear	Green crab (crushed), sandlance
2025-05-29	10:50	SI3	Low	0	0	3	3	0	0	14	0	0	0	0	Clear	3 green crab (crushed), flatfish, shrimp
2025-05-29	11:42	HI1	Low	0	0	20	15	0	0	0	0	0	0	0	Scattered clouds	Flatfish
2025-05-29	12:14	HI2	Low	0	0	0	0	10	0	0	0	0	0	0	Clear	10 coho >150 mm. Not juveniles, not retained, did not fit into 4 Oz bags. Herring, perch
2025-05-29	12:49	MC1	Low	0	0	7	7	2	2	0	0	0	0	0	Clear	School of shiner perch
2025-05-29	13:19	HI3	Mid	0	0	0	0	1	1	0	0	0	0	0	Clear	30 pile perch, 2 gunnel
2025-05-29	13:54	BS1	Mid	0	0	0	0	0	0	0	0	0	0	0	Clear	Sculpins, flatfish, jellyfish
2025-05-29	14:17	BS2	Mid	0	0	4	4	0	0	0	0	0	0	0	Clear	Sculpins, jellyfish
2025-05-30	10:01	BS3	Low	0	0	0	0	3	3	0	0	0	0	0	Overcast	4 rainbow trout, 50 green crab (crushed), gunnel, tubesnout
2025-05-30	10:32	BS4	Low	0	0	52	15	0	0	0	0	0	0	0	Overcast	Jellyfish, pile perch, gunnel, pipefish
2025-05-30	11:10	BS5	Low	0	0	2	2	3	3	0	0	0	0	0	Overcast	Jellyfish, juvenile ling
2025-05-30	11:40	BS6	Low	0	0	0	0	0	0	0	0	0	0	0	Overcast	Perch, goby, ctenophore, shrimp, flatfish
2025-05-30	12:04	FC3	Low	0	0	0	0	0	0	0	0	0	0	0	Overcast	Sculpin, jellyfish, flatfish, pipefish, sea star, shrimp
2025-05-30	12:26	FC4	Low	0	0	0	0	2	2	0	0	0	0	0	Overcast	Moved set 100m to avoid a snag
2025-05-30	12:48	FC1	Low	0	0	0	0	0	0	0	0	0	0	0	Light rain	1 rainbow trout
2025-05-30	13:06	FC2	Low	0	0	0	0	0	0	0	0	0	0	0	Light rain	Gunnel, shiner perch

Appendix III – Sea Lice Analysis

DATE COLLECTED	SITE NAME	FISH SPECIES	LENGTH IN MM	WEIGHT IN G	LEP CO	LEP C1	LEP C2	LEP NM NOT ID	LEP PAM	LEP PAF	LEP AM	LEP AF	TOT LEP ID	CAL CO	CAL C1	CAL C2	CAL C3	CAL C4	CAL NM NOT ID	CAL PAM	CAL PAF	CAL AM	CAL AF	TOTAL CAL ID	TOT LICE ID
2025-04-10	SI2	Chum	39	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	SI2	Chum	37	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	SI2	Chum	36	0.4	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
2025-04-10	SI2	Chum	38	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	SI2	Chum	35	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	SI2	Chum	38	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	SI2	Chum	37	0.5	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
2025-04-10	SI2	Chum	37	0.5	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
2025-04-10	SI2	Chum	36	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	SI2	Chum	38	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	SI2	Chum	40	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	SI2	Chum	39	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	SI2	Chum	35	0.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	SI2	Chum	40	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	SI2	Chum	39	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	MC3	Chum	38	0.6	0	1	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
2025-04-10	MC3	Chum	39	0.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	MC3	Chum	35	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	MC3	Chum	33	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-10	MC3	Chum	36	0.7	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1
2025-04-10	MC3	Chum	35	0.6	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-10	MC3	Chum	37	0.7	1	3	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	4
2025-04-10	MC3	Chum	38	0.7	0	1	0	0	0	0	0	0	0	1	0	2	0	0	0	0	0	0	0	2	3
2025-04-10	MC3	Chum	39	0.9	2	3	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	5
2025-04-10	MC3	Chum	36	0.6	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1
2025-04-10	MC3	Chum	38	0.7	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	1
2025-04-10	MC3	Chum	35	0.6	0	2	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
2025-04-10	MC3	Chum	34	0.6	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	2
2025-04-10	MC3	Chum	34	0.6	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-10	MC3	Chum	35	0.6	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-10	SD1	Chum	35	0.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-10	SD1	Chum	36	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-10	SD1	Chum	35	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-10	SD1	Chum	37	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-10	SD1	Chum	35	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-10	SD1	Chum	35	0.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-10	SD1	Chum	36	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-10	SI1	Chum	38	0.6	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1
2025-04-10	SI1	Chum	38	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-10	SI1	Chum	37	0.5	2	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2

DATE COLLECTED	SITE NAME	FISH SPECIES	LENGTH IN MM	WEIGHT IN G	LEP CO	LEP C1	LEP C2	LEP NM NOT ID	LEP PAM	LEP PAF	LEP AM	LEP AF	TOT LEP ID	CAL CO	CAL C1	CAL C2	CAL C3	CAL C4	CAL NM NOT ID	CAL PAM	CAL PAF	CAL AM	CAL AF	TOTAL CAL ID	TOT LICE ID
2025-04-11	FC4	Chum	37	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-11	FC4	Chum	37	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	FC4	Chum	36	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	FC4	Chum	37	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	FC4	Chum	37	0.5	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
2025-04-11	BS4	Chum	42	0.8	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
2025-04-11	BS4	Chum	40	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS4	Chum	41	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS4	Chum	39	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS4	Chum	41	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS4	Chum	38	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS4	Chum	46	1.0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
2025-04-11	BS4	Chum	39	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS4	Chum	39	0.6	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
2025-04-11	BS4	Chum	44	0.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS4	Chum	38	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS4	Chum	38	6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS4	Chum	38	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS4	Chum	40	0.6	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
2025-04-11	BS4	Chum	37	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS5	Chum	32	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS5	Chum	35	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS5	Chum	35	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS5	Chum	36	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS5	Chum	40	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS5	Chum	36	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS5	Chum	36	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-11	BS5	Chum	39	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-29	MC1	Chum	53	1.8	2	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	
2025-04-29	MC1	Chum	57	1.9	0	2	0	0	0	0	0	0	0	2	0	0	0	1	0	0	0	0	0	1	3
2025-04-29	MC1	Chum	50	1.6	1	0	0	0	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	
2025-04-29	MC1	Chum	55	2.4	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
2025-04-29	MC1	Chum	60	2.8	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
2025-04-29	MC1	Chum	54	2.0	0	1	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	
2025-04-29	MC1	Chum	63	2.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-29	MC1	Chum	56	2.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-29	MC1	Chum	64	3.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-29	MC1	Chum	54	2.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-29	MC1	Chum	73	4.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	
2025-04-29	MC1	Chum	67	4.0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
2025-04-29	MC1	Chum	71	4.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-04-29	MC1	Chum	61	3.2	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	

DATE COLLECTED	SITE NAME	FISH SPECIES	LENGTH IN MM	WEIGHT IN G	LEP CO	LEP C1	LEP C2	LEP NM NOT ID	LEP PAM	LEP PAF	LEP AM	LEP AF	TOT LEP ID	CAL CO	CAL C1	CAL C2	CAL C3	CAL C4	CAL NM NOT ID	CAL PAM	CAL PAF	CAL AM	CAL AF	TOTAL CAL ID	TOT LICE ID
2025-04-30	FC4	Coho	94	9.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	FC4	Coho	102	12.7	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	FC4	Coho	103	15.3	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	FC4	Coho	115	16.8	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	FC4	Coho	106	16.1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	FC2	Chum	54	2.1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	FC2	Chum	42	0.8	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	FC2	Chum	54	1.8	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	FC2	Chum	46	1.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	FC2	Chum	53	2.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	FC2	Chum	41	0.9	1	0	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
2025-04-30	FC2	Chum	33	0.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	FC2	Chum	46	1.2	2	1	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	3
2025-04-30	FC2	Chum	51	1.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	FC2	Chum	44	1.1	1	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
2025-04-30	FC2	Chum	52	1.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	FC2	Chum	47	1.2	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	FC2	Chum	47	1.2	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	FC2	Chum	51	1.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	FC2	Chum	41	0.8	1	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
2025-04-30	FC2	Chum	47	1.2	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	FC2	Chum	51	1.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	FC2	Chum	41	0.8	1	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
2025-04-30	FC3	Chum	41	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	FC3	Chum	43	0.8	1	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
2025-04-30	FC3	Chum	42	0.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	FC3	Chum	50	1.5	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	FC3	Chum	39	0.8	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
2025-04-30	FC3	Chum	36	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	FC3	Chum	44	1.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	FC3	Chum	52	1.6	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	FC3	Chum	45	1.1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	BS6	Chum	45	1.0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	BS6	Chum	41	0.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2025-04-30	BS6	Chum	44	1.0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	BS6	Chum	48	1.2	0	1	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
2025-04-30	BS6	Chum	49	1.4	0	0	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
2025-04-30	BS6	Chum	45	1.1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	BS6	Chum	38	0.6	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
2025-04-30	BS6	Chum	53	1.8	0	2	1	0	0	0	0	0	0	3	0	1	0	0	0	0	0	0	0	0	1
2025-04-30	BS6	Chum	49	1.3	0	2	0	0	0	0	0	0	0	2	0	0									

DATE COLLECTED	SITE NAME	FISH SPECIES	LENGTH IN MM	WEIGHT IN G	LEP CO	LEP C1	LEP C2	LEP NM NOT ID	LEP PAM	LEP PAF	LEP AM	LEP AF	TOT LEP ID	CAL CO	CAL C1	CAL C2	CAL C3	CAL C4	CAL NM NOT ID	CAL PAM	CAL PAF	CAL AM	CAL AF	TOTAL CAL ID	TOT LICE ID
2025-05-30	BS4	Chum	65	3.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-05-30	BS4	Chum	62	3.0	4	1	1		0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	6	
2025-05-30	BS4	Chum	52	1.9	0	2	1		0	1	0	0	4	0	0	0	0	0	0	0	1	0	0	1	5
2025-05-30	BS4	Chum	65	3.3	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	1	2	
2025-05-30	BS5	Chum	64	3.0	0	1	0		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	
2025-05-30	BS5	Chum	61	2.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-05-30	BS5	Coho	88	8.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-05-30	BS5	Coho	97	10.4	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	
2025-05-30	BS5	Coho	79	6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-05-30	BS3	Coho	86	8.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-05-30	BS3	Coho	72	4.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2025-05-30	BS3	Coho	95	12.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	